
ÜBERSPARK†: Enforcing Verifiable Object Abstractions for
Automated Compositional Security Analysis of a Hypervisor

Amit Vasudevan*, Sagar Chaki**, Petros Maniatis***, Limin Jia**** and Anupam Datta****

*amitvasudevan@acm.org – CyLab/Carnegie Mellon University
**chaki@sei.cmu.edu – SEI/Carnegie Mellon University

***maniatis@gmail.com – Google Inc.
****{liminjia,danupam}@cmu.edu – CS/ECE Carnegie Mellon University

Abstract—We present überSpark (üSpark), an innovative
architecture for compositional verification of security prop-
erties of extensible hypervisors written in C and Assembly.
üSpark comprises two key ideas: (i) endowing low-level
system software with abstractions found in higher-level
languages (e.g., objects, interfaces, function-call seman-
tics for implementations of interfaces, access control on
interfaces, concurrency and serialization) and enforcing
these “verifiable-object” abstractions using a combination
of commodity hardware mechanisms and light-weight static
analysis; and (ii) interfacing with platform hardware by
programming in Assembly using an idiomatic style (called
CASM) that is verifiable via tools aimed at C, while
retaining its performance and low-level access to hardware.
After verification, the C code is compiled using a certified
compiler while the CASM code is translated into its
corresponding Assembly instructions. Collectively, these
innovations enable compositional verification of security
invariants without sacrificing performance. We validate
üSpark by building and verifying security invariants of
an existing open-source commodity x86 micro-hypervisor
and several of its extensions, and demonstrating only minor
performance overhead, and low verification costs.

1. INTRODUCTION

The modern hypervisor stack is, by necessity, extensi-
ble. Hypervisors not only enable the old hat style of
customization, such as modularity for device drivers,
but are further extended with convenient functionality
for security services such as attestation, debugging,
tracing, application-level integrity and confidentiality,
trustworthy resource accounting, on-demand I/O isola-
tion, trusted path, and authorization [14], [18], [22],
[49], [53], [57], [62], [64], [65], [71], [73], [74], [76],
[79], [82]–[85]. Further, the overwhelming majority of
deployed hypervisor codebase is written in low-level
C and Assembly, due to hardware accesses, developer
familiarity, and performance requirements.

†In the fictional Transformers universe, the AllSpark is a powerful
object capable of creating a new Transformer by bestowing ordinary
machinery with sparks – the building blocks of a Transformer. In a
similar vein, ÜBERSPARK bestows ordinary hypervisors with verifiable
objects (ÜOBJECT) for automated compositional security analysis.

1.1. Problem – The unbridled growth of these exten-
sible hypervisors, while enabling useful functionality,
raises significant security concerns. As the size and com-
plexity of these systems increase – not to mention the
number of extensions, which may be active in arbitrary
combinations – so has the incidence of security-related
bugs. Indeed exploitable bugs in extension interfaces
have led to compromises in various hypervisors ranging
from complex VMMs to micro-hypervisors [2], [3],
[26], [27], [44]. Thus, higher assurance in the security
properties offered by hypervisors is critically important.
1.2. Solution – We address this challenge by develop-
ing überSpark (or üSpark), an architecture for building
extensible hypervisors that is: (a) compatible with com-
modity systems; (b) enables automated compositional
verification of security properties; and (c) produces per-
formant systems. Compatibility with commodity systems
is crucial to impact developers and deployment ecosys-
tems. üSpark supports development and verification di-
rectly at the C and Assembly source-level and enables
access to more commodity hardware features. It is thus
distinct from prior approaches that sacrifice commodity-
compatibility by employing new programming languages
or hardware models [33], [36], [80]. Compositionality
means that extensible systems can be verified modularly,
rapidly, and independently as they are implemented.
Specifically, when an extension is added, üSpark does
not require complete system re-verification to reestablish
properties. While this goal guides much work in high-
level languages, achieving it for low-level languages is
a significant challenge. Furthermore, it distinguishes us
from verification of full functional correctness [31], [33],
[43]. We focus only on security invariants – memory
separation, control-flow integrity, information flow – and
other extension properties that can be formulated as
invariants. We verify such properties directly, composi-
tionally, and automatically on the (C and Assembly) im-
plementation. This helps bring to commodity-compatible
hypervisors those on-going approaches that offer full
functional correctness while enabling precise reasoning
on untrusted and unverified system code. Finally, a

1

üSpark hypervisor’s performance is close to that of a
commodity unverified system.

Key to the power of üSpark is the enforcement of
verifiable-object abstractions to hypervisors. The basic
building block is a üobject, which encapsulates specific
system resources and provides an interface – with a well-
defined behavioral contract (comprising a use manifest
along with formal behavior specifications) – for access-
ing them. A üobject may represent core components of
a hypervisor or an extension and may be concurrent
or sequential. Public methods of concurrent üobjects
are invoked in parallel by multiple cores whereas se-
quential üobjects are implemented as monitors, guarding
all method invocations via a per-üobject lock. üObjects
communicate with each other via function calls.

There are two special üobjects: prime sets up a
sane initial state, while sentinel ensures control-flow
semantics even when üobjects with different levels of
privilege and trust invoke each other. Together, they
enable compositional inductive proofs of security prop-
erties expressed as invariants over sequential üobjects
via source code analysis and hardware assumptions
(see Barnett et al. [8]). A third group of special üAPI
üobjects enable access to shared resources. This design
enables state-of-the-art tools for automatic verification
of sequential C code to be soundly applied to verifying
security properties, while still allowing multi-threaded
high-performance applications.

In keeping with our first and second design goals,
üSpark enforces verifiable-object abstractions using a
combination of commodity hardware mechanisms (page-
tables and de-privileging) and light-weight static anal-
ysis, leveraging off-the-shelf C99 source-code analy-
sis and certified compilation tools. üObjects, includ-
ing prime and sentinel, are automatically and modu-
larly verified using Frama-C [41], an industrial-strength
software analysis and verification framework. We use
standard and custom Frama-C plug-ins to perform static
verification checks that include: per-üobject behavioral
contracts (via a standard weakest-precondition plug-in);
abstract variable assertions that enable behavioral asserts
as well as üobject control-flow integrity (via a standard
abstract-interpretation plug-in on stack frames and other
variables); syntactic checks that ensure conformance
with a restricted C99 syntax and logical de-privileging
of üobjects (via a standard abstract syntax tree analysis
plug-in); and, composition checks that enable client
üobjects that share a common server üobject to compose
soundly (via a custom composition-check plug-in that
analyses use manifests).

üSpark also provides an idiomatic use of Assembly,
called CASM, to separate it from C code during system
construction. During analysis with Frama-C, the CASM
code is replaced by a C99 hardware model which models

key commodity hardware features. Our custom Frama-
C plug-in checks that the syntactic restrictions imposed
by CASM are respected by every üobject. The verified
üobjects are then compiled into executable binaries. Dur-
ing üobject compilation, all C99 code is processed using
the certified CompCert compiler [12] while each CASM
instruction is replaced by the corresponding Assembly
instruction by our custom Frama-C plugin. The CASM
language is designed to ensure that the C and Assembly
code operate on disjoint state. Our longer-term goals are
to guarantee the semantic equivalence between the hard-
ware model and the corresponding Assembly instructions
as well as ensure that verified source code properties
carry over to the binary by leveraging the C-Assembly
separation to cleanly extend the bisimulation proof of
the CompCert compiler to encompass hardware state
and Assembly code. Formal proofs of these guarantees,
however, are beyond the scope of this paper.

The üSpark object abstraction is distinguished from
other systems in that it allows many fine-grained objects
in privileged mode. Static analysis enforces logical de-
privileging of those objects – e.g., a hypervisor module
running in host-mode ring 0 is precluded from accessing
page-table structures, thereby being “logically” depriv-
ileged – while control transfer between them does not
involve a context switch, thereby significantly helping
with system performance, our third design goal.
1.3. Contributions – (a) We present üSpark, an innova-
tive architecture providing verifiable object abstractions
for automated compositional verification of hypervisor
security properties while targeting commodity compati-
bility and performance (§4,§5). (b) We use üSpark to in-
crementally develop and verify security properties of an
existing open-source commodity x86 micro-hypervisor
with multiple independent security extensions (hypervi-
sor and extensions realized as 11 üobjects with 7001
SLoC; 5544 and 2079 lines of annotations and hard-
ware model; §6,§7). (c) We carry out a comprehensive
evaluation showcasing verification metrics, development
effort and performance, and report on our experience (1
person yr; üobject verification times from 1–23 minutes
with a cumulative time ≈ 1hr; 2% avg. runtime overhead
over native micro-hypervisor applications with guest
performance unaffected; §8,§9).

2. A MOTIVATING EXAMPLE

We use as a running example, a hypervisor that closely
corresponds to our case study, to motivate and explain
üSpark. Imagine the hypervisor managing a multi-CPU
guest, and supporting optional security extensions that
implement various guest-specific and system-wide secu-
rity properties. The hypervisor manages system devices
used by itself, by extensions, and by the guest. System
devices execute device firmware in parallel with the

2

CPUs and perform DMA to/from main memory. The
hypervisor and extensions are written in C and assembly.

The hypervisor leverages CPU capabilities, such as
memory-mapped I/O (MMIO) and legacy I/O, for
system-to-device interaction; it initializes boot CPU
(BSP) state; it sets up memory page tables, as well as
device allocations and DMA protections (e.g., via an
IOMMU); it initializes multi-CPU support via the Local
Advanced Programmable Interrupt Controller (LAPIC)
and activates processors and sets up their memory page
tables and appropriate protections. Constructing a veri-
fied hypervisor of this sort, the developers must not only
build it and test it well, but also verify its code against a
set of general safety properties (e.g., memory integrity)
as well as functional invariants on hardware and software
state (e.g., IOMMU, LAPIC, CPU states).

Consider now adding two new verified extensions to
the hypervisor: hyperdep, which ensures that guest-
VM data pages are non-executable; and (b) sysclog,
which ensures that every system call issued by the guest
is logged via a dedicated network card to an external
trusted entity on the network. In order to preserve the
verified status of the system, the developers must prove
that: (a) memory integrity is not violated by the exten-
sions; (b) each extension provides its claimed property
to guests configured to use it; and (c) the extensions are
used in tandem by a guest if and only if they provide a
well-defined compositional property (e.g., separability).
This is non-trivial, since it requires the construction
and verification of inductive invariants that imply the
core security properties of the hypervisor, and those of
enabled extensions. Also, since extensions are optional,
verification must account for all possible configurations
– e.g., enabling either hyperdep, or sysclog, or both
– while avoiding the combinatorial blowup.

Of course, history tells us that two extensions are
never enough for any extensible system. What is more,
not all extensions come from the same developers or with
the same pedigree. Consider, for instance, an unverified,
strictly optional extension to the hypervisor; this might
be an extension that provides essential functionality, but
has not been verified, and is taken as an acceptable risk.
For our example, let us use aprvexec, an extension that
ensures that guest code pages contain only read-only,
whitelisted content. As with hyperdep and sysclog,
core hypervisor properties, and the properties of other
extensions should not be violated by running aprvexec,
and the risk of running aprvexec should only be
suffered by a guest that explicitly enables it and relies on
its presumed properties. Note that the guest itself, unless
it is verified as rigorously as the rest of the hypervisor,
is such an unverified component in the system.

3. GOALS AND ASSUMPTIONS

3.1. Goals – Our overarching goal is to enable develop-
ment of performant extensible hypervisors offering pro-
ofs of wide-ranging properties on their code, including
low-level memory safety, control-flow guarantees, and
information flow, as well as higher-level properties such
as trusted network logging (sysclog) and data execu-
tion prevention (hyperdep), going all the way up to
security properties spanning both hardware and software
states (IOMMU, LAPIC, network-card and CPU). Also,
verification must support properties over shared system
states: e.g., both hyperdep and sysclog manipulate
guest memory protections via the same guest page-
tables. Our design goals fall broadly in three categories.
3.1.1. Compositionality: When new components are
added, or existing components changed, human re-
verification effort should be limited to the changed
codebase, yet it should provide guarantees about the
entire system under all possible configurations.
3.1.2. Legacy Compatibility & Usability: Our develop-
ment and verification approach must integrate into the
existing hypervisor C and Assembly language program-
ming ecosystem, and cover the entire source code base
including commodity hardware and guest OS. We must
support extensions that are unverified in order to preserve
the legacy ecosystem. However, unverified code (e.g.,
the guest) must not violate system properties estab-
lished by verified code. Our development and verification
techniques must foster wider adoption by hypervisor
developers. We envision that entry-level developers will
rely on basic building blocks to provide simple prop-
erties while seasoned developers will harness the full
verification power to provide stronger guarantees.
3.1.3. Performance: Verification must not preclude ag-
gressive code optimizations for individual components,
including extensions, and must not adversely affect run-
time performance. Further, commodity guest OS with
multi-core hardware must be supported.
3.2. Non-goals – We do not aim for full functional
correctness (i.e., verifying that the implementation be-
haves exactly as specified in a high-level abstraction).
This separates the concerns of showing how a complex
low-level system achieves low-level formal properties
from how those low-level properties refine a high-level
abstract model; we focus on the former, since it is a hard
and as yet open problem, whereas several on-going work
tackles the latter [31], [42].
3.3. Attacker Model and Assumptions – We assume
that the attacker does not have physical access to
the CPU, memory, chipset or other verified extension-
specific system devices (our hardware TCB). Other sys-
tem devices, the guest OS, and unverified extensions are
under the attacker’s control. This is reasonable since a
majority of today’s attacks are mounted by malicious
software or untrusted system devices. We assume that

3

our hardware TCB is functionally correct, and we have
load-time integrity, i.e., the verified hypervisor is the one
securely loaded onto the hardware at boot time. Finally,
we assume that the verification tools we use are sound.

4. ÜSPARK ARCHITECTURE

We next describe our architecture, and how it addresses
our goals (§3.1) via verifiable object abstractions (Fig 1)
4.1. üObjects – The basic building block in üSpark– the
“üobject” – is used to contain any system component
including verified and unverified hypervisor and guest
blobs and system devices. Logically, a üobject is a
singleton object guarding some otherwise indivisible
resources (e.g., registers, memory, devices) and imple-
menting public methods to access them. Public methods
are essentially regular function signatures but can be
restricted to specific callers (§4.2.1). Every üobject also
has a special public method, init, to set up the üobject
in a safe initial state. A üobject may be concurrent or
sequential. The public methods of a concurrent üobject
can be invoked in parallel on multiple cores. In con-
trast, at most one core can invoke the methods of a
sequential üobject at a time, as with a traditional monitor.
When multiple cores are active, sequential execution is
enforced via per-üobject locks.

Each üobject defines its functionality using C and
Assembly and is compiled to its binary. Assembly lan-
guage for a verified üobject is written using CASM,
a dialect of C in which Assembly instructions are
encoded within regular C functions (CASM functions)
via C-like pseudo-function calls (CASM instructions1).
For example, for the x86 instruction movcr3 involving
register eax there is a corresponding CASM pseudo-
function called ci_movl_eax_cr3. Each CASM in-
struction pseudo-function is defined in the üSpark hard-
ware model (§7.1.2) and bridges the shift between the
reference C semantics and the hardware instructions (e.g.
access to memory and to registers). During verification,
each CASM instruction is replaced by the C source code
from the hardware model. The resulting C-only program
is verified for required properties. CASM functions are
verified to respect the C application binary interface
(ABI), which is crucial for the soundness of verification.
During compilation, all C functions are processed via
a certified compiler while each CASM instruction is
replaced by the corresponding Assembly instruction. In
contrast to prior code-level verification approaches (§10),
CASM supports two-way nested C to Assembly calling
with full device modeling. This allows using various
verification techniques to prove (higher-level) properties

1CASM syntax is similar to existing “asm” keywords supported by
traditional C compilers for integrating Assembly language instructions.
However, CASM provides a more principled way to integrate Assem-
bly instructions tailored for verification while retaining performance.

on device states other than just memory and numeric
safety (§7.2). CASM also allows aggressive compiler op-
timizations of the callee C functions including inlining as
per compiler specifications, resulting in optimal runtime
performance (§8.3). We envision further optimizations
including inlining of hand-written CASM code as part
of our future work (§11.2).

Beyond defining its own functionality, a üobject is also
accompanied by a behavior contract. This consists of a
use manifest (§4.3) and a formal behavior specification
of its own public interface, which guarantee that if a
certain assumption is satisfied in how a public method
is invoked, then a property on the return values is
guaranteed to hold upon return of that method, without
mention of internal üobject state.

Every üobject is held to a number of invariants, which
together guarantee its adherence to the verifiable object
abstraction. These invariants include memory and (inter-
nal) source-lvel control-flow integrity, so that the code
can be reasoned about; and satisfaction of the formal
contract, so that the contract alone may overapproximate
the üobject, thereby enabling compositional verification;
as well as correct initialization. The invariants are dis-
charged via assumptions on the hardware and proofs on
the source code of the üobject, and on the contract of
üobjects it interacts with (§5, §7.2).

While our use of object encapsulation is similar to ex-
isting micro-kernel architectures [42] and prior capability
systems [32], [63], üSpark is distinguished by privileged
disaggregation, i.e., multiple verified privileged üobjects
can be logically deprivileged. This enables us to achieve
the sweet spot with both high performance (there is no
hardware de-privileging overhead; §8.3.1) and compo-
sitional verification (privileged üobjects can be verified
seperately; §7.2).
4.1.1. Prime: is the first üobject to execute in a üS-
park enabled hypervisor. Prime is verified to satisfy
its contract which is: to set up the required system
interfaces and associated policies, establish operating
stacks, prepare the platform CPU cores, invoke the init
methods of other üobjects to initialize their state, and
kick-start üobject interactions.
4.2. üObject Interaction – A üobject interacts with an-
other by invoking a public method in its interface with
appropriate parameters. All verified üobjects operate on a
single stack (one per CPU core) that is set up initially by
the prime. Each unverified üobject uses its own, separate
stack. Verifiable object abstraction requires üobject-to-
üobject control-flow integrity (otherwise returns could
land at arbitrary üobject program sites, access controls
would be violated, etc.). Therefore, üobjects must also be
verified to use their stack correctly (another invariant).
For unverified üobjects, that also means that stacks must
be switched to/from the unverified üobject stack and a

4

H/W & S/W verification enforced

call,call-async

ret,ret-async

call

ret

[CPU (privileged) instructions, memory and device interfaces]
System Resources

H/W enforced S/W verification enforced

(a)

(b)

Fig. 1: überSpark: enforces verifiable object abstractions using a com-
bination of commodity hardware and software verification mechanisms
to: (a) translate synchronous (call) and asynchronous (e.g., exceptions,
intercepts) inter-üobject control transfers, to establish pure function
call-return semantics; and (b) establish üobject resource confinement.

separate shadow stack must be maintained for storing
return addresses during control transfers. The special
sentinel üobject performs (verifiably) this functionality.
4.2.1. Sentinel: is a special üobject that mediates inter-
actions among other üobjects. Thus, an invocation of a
public method of a callee üobject by a caller üobject is
intercepted by the sentinel and dispatched only after a
number of optional runtime checks have succeeded.

These runtime checks logically ensure that the caller
may invoke a given public method on the callee ac-
cording to the üobject manifest (§4.3). For example,
an extension can be split between a top half and a
bottom half as with traditional device drivers (in our case
study, sysclog could be split into a portion sysclognw
sending log entries via the network, and one that collects
and annotates intercepted system calls), ensuring that
only the top half may invoke the bottom half at runtime,
while still keeping the two isolated from each other
and independently verifiable. If caller and callee are
both verified, then no runtime check is required, since
static analysis enforces the call policy (§4.3). If one is
unverified, the sentinel consults the policy dynamically
and allows or rejects the call accordingly.

Besides the runtime checks, the sentinel is respon-
sible for transfering control among üobjects. If both
are verified, the control transfer is just a function call.
But if either is unverified, the sentinel must employ
the appropriate control-transfer method for the isolation
mechanism imposed on the unverified üobject (e.g., if
using ring-based isolation, switch privilege levels, mar-
shal call arguments, etc.). The sentinel may implement
control transfers according to a number of concrete ways

(hardware virtual machines, software fault isolation,
etc.), while still adhering to the high-level invariant for
isolation. For example, in our micro-hypervisor imple-
mentation, the sentinel traverses both ring-based isolated
üobjects, and hardware virtual machines (§6).

The sentinel is an üobject, so it adheres to the same
invariants as regular üobjects, but it is also verified to
implement its function correctly (perform the checks,
properly transfer control, etc.)
4.3. üObject Resource Confinement – üSpark imple-
ments üobject resource confinement in which distinct
system resources are: (a) managed by designated üob-
jects, (b) protected from access by unauthorized üob-
jects, and (c) regulated in their use by authorized client
üobjects. Such resources include üobject local memory
(code, data, stack), system memory (e.g., BIOS data, free
memory), CPU state and privileged instructions, system
devices and I/O regions. Every üobject includes a use
manifest in its contract that describes which resources it
must access (Appendix B). It is held to the property that
it can only use the resources declared in its manifest.

For verified üobjects, üSpark employs a hardware
model identifying CPU interfaces to system resources
(e.g., I/O and designated memory instructions interface
to system devices, instructions that can modify CPU
model specific register states etc.) and static analysis
to ensure that access to those interfaces respect the
üobject’s manifest (§7). E.g., sysclog’s manifest shows
that it must access the dedicated network card for its
remote logging, and static analysis ensures that the code
for sysclog may access only that network card, nor can
any other üobject access sysclog’s network card.

In contrast, unverified üobjects are held to their use
manifests via more direct enforcement mechanisms, such
as hardware MMU and privilege protections (virtualiza-
tion, de-privileging) and software manipulations (e.g.,
SFI). Unverified üobjects can also be granted direct
access to exclusively held system devices so they can
perform I/O without any performance overhead (e.g., a
guest OS üobject is allocated all the devices except the
LAPIC and sysclog’s network card). Device üobjects
use DMA as their interface to other üobjects. üSpark uses
hardware IOMMU capabilities to ensure that device üob-
jects are restricted to perform DMA only to designated
üobject DMA memory regions.
4.3.1. üAPI üobjects: are a special set of üobjects that
encapsulate shared resources over which system proper-
ties are established (§6.4). For example, guest OS üob-
ject memory and CPU state are manipulated by multiple
extensions (hyperdep and sysclog). üSpark enforces
a composition check (§7.2.1), which for a given set of
üAPI üobjects checks if a set of “client” üobjects are
composable. Note that every üAPI üobject also performs
composability checks at runtime for invocations from

5

unverified üobjects. Such composability checks reason
about the use-manifest portion of a client üobject’s
contract, which constrains how that üobject invokes the
üAPI’s public methods, ensuring some system-specific
and üAPI-specific composability guarantee, such as sep-
arability. Client üobjects must satisfy the property that
whenever they invoke a üAPI call, they obey their own
use manifest, and üSpark discharges this property via
static analysis on verified üobjects or runtime sentinel
checks for unverified üobjects.
4.4. üSpark Blueprint – üSpark also defines a hypervi-
sor blueprint (üBP) which a hypervisor implementation
is held to. The üBP is a high-level control-flow graph that
divides hypervisor execution into three phases: startup,
intercept and exception handling which can in turn be
customized based on the actual number of system üob-
jects and their interactions (Figure 2; §6). The üBP along
with our high-level proofs (§5) enables us to abstract
the hypervisor, running on multi-core platform hardware
with system devices and DMA, as a non-deterministic
sequential program. This, in turn, allows us to prove
invariant properties of üobjects, and the hypervisor as
a whole, via sequential source code verification. Further,
the üBP also enforces that fragile bits of the hardware
state (e.g., CPU and IOMMU) are only touched within
a monitor. This, allows us to prove invariant properties
encompassing hardware states and keeps our hardware
model simple by precluding modeling of concurrent
hardware accesses (§7.1.2).

5. ÜSPARK FORMALISM

This section presents a formalization of üSpark that jus-
tifies the soundness of our analysis. For brevity, we first
give an overview of the formal reasoning followed by our
high-level verification approach and related theorems.
Full proof details can be found in Appendix C.
5.1. üSpark Formalism Overview – üSpark reasoning
relies foundationally on a set of invariants – properties
that must hold throughout the execution of a üSpark
hypervisor. The invariants are divided into üSpark system
invariants and üSpark general programming invariants
(those that pertain specifically to üobject C and CASM
functions). Each invariant is proved by reducing it further
to a set of proof-assumptions on hardware (PAHs) and
proof-obligations on code (POCs) using the üSpark
blueprint (üBP; Fig. 2). POCs are then discharged on all
üSpark verified üobjects including the prime and sentinel
using specific verification tools and techniques (§7). A
hypervisor implementation is compliant with üSpark–
and therefore amenable to compositional reasoning –
if it satisfies all the üSpark invariants. Full details of
invariant-to-PAH/POC mappings, a one-time effort, is
described in Appendix D. At a high level, üSpark invari-
ants ensure the hypervisor implementation follows the

üBP and that prime is correct, and the first to start in the
system, and that it sets up memory protections, stacks,
and CPU cores, before starting other execution contexts
in a well-defined state. The remaining invariants guaran-
tee that üobjects have memory and control-flow integrity,
and the sentinel properly transfers control among them,
respecting the concurrent/sequential designation.
5.2. Verification Approach and Theorems – There
are two tasks in verifying properties of a üSpark
hypervisor: (a) showing that it obeys the üSpark
invariants; and (b) showing that it obeys any
hypervisor/extension-specific invariant properties.
The benefit of (a) is that developers can express
system-specific properties in terms of üobjects and their
interactions with each other, yet verify those properties
separately on each individual üobject in isolation,
and on the ensemble of the behavior contracts of all
üobjects, without having to perform slow verification of
the combined source code for the whole code base.

Crucial to the model of üobject are CASM programs,
defined below. First, we define a CASM function as a
CompCert-C99 (CC99) function whose body consists
only of a block of Assembly instructions that respect
the CC99 ABI. A üobject CASM program is a CC99
program such that: (i) all Assembly code appears only
in CASM functions; and (ii) these CASM functions
preserve the caller C functions’ CPU register state.

Given a üobject CASM program, we are interested
in verifying two kinds of properties: (1) invariant prop-
erties: whether ϕ holds at every state (after every in-
struction), and (2) individual state assertions: whether ϕ
holds at specific program points. We can also specify
assumptions (i.e., preconditions), stating that we assume
ϕ holds when a function is called. Verification tools such
as Frama-C (§7) take programs annotated with properties
to be checked and decide whether the properties hold
on all execution traces of the program. We begin with
two üSpark theorems essential for the correctness of
our approach, which follow directly from the üSpark
programming invariants (Appendix C).

Theorem 1 (DISJOINTCASM). The union of üobject
CASM and C functions preserve the existing semantic
preservation property of the certified compiler.

Theorem 2 (EXITSENTINEL). üobject execution can
only exit via the sentinel.

The next theorem states that each üSpark execution is
an interleaving of properly nested executions of üobjects,
one on each core (a more formal definition can be found
in Appendix C). Intuitively, it means that üobject calls
and returns are properly nested except that the return
of an unverified üobject can be an exception, as an
unverified üobject can lie about its return address, but

6

5

2a

4

4a

= =

4b

5a

7b5c

7a

5b 7c

8

8a

7

6

2

1

3

Fig. 2: üSpark Hypervisor Blueprint: startup, intercept and exception handling execution phases. Rounded boxes = üobjects; Square boxes =
nested üobject calls; Arrows = intra- and inter-üobject transitions; Single-lines = serialized execution; Double-lines = concurrent execution.

will be caught by the hardware if it steps out of the
üobject memory. This theorem enables us to view üSpark
semantically as a concurrent object-oriented program,
which is then abstracted as a non-deterministic sequential
program for verification.

Theorem 3 (NESTEDCALL). Consider a legal execution
π of üSpark and a sequential üobject s. The projection of
π on executions of s consists of a sequence of properly
nested executions of s, each on a specific core.

5.2.1. Hardware Model and Converting Assembly to C:
We use C verification tools to verify CASM functions
in üobjects by converting Assembly to C. In addition
to general-purpose registers (which are preserved to
respect the CC99 ABI) these Assembly instructions
access special hardware registers (e.g., LAPIC). Let us
denote the set of registers accessed by CASM functions
in üSpark by Rhw . We introduce a set of fresh C
variables (denoted Vhw), one for each register; replace
each Assembly instruction accessing Rhw by one or
more CC99 statements that operate in a semantically
equivalent way over Vhw ; replace each r ∈ Vhw with vr
in assertions used for specifying hardware state during
verification. We refer to the mapping between Rhw

and Vhw , and the induced mapping from Assembly
instructions to CC99 statements, as our hardware model.
We assume that this mapping is correct. We refer to
the CC99 function obtained by transforming a CASM
function f in this manner as f̃ .
5.2.2. Abstract üSpark: We abstract üobjects as a non-
deterministic CC99 (NDCC99) program, i.e., a CC99
program with non-deterministic selection of values from
finite sets. In particular, the abstract üSpark üBP con-
sists of a set of abstract üobjects, where each abstract
üobject s̃ is obtained from the corresponding concrete
üobject s by converting each function g ∈ p(s) to an
abstract function g̃; more concretely: by replacing all

CASM functions as described above, replacing accesses
to data that other cores and devices can modify by non-
deterministic values, replacing a call to an unverified
üobject by a call to the intercept handler üobject with
non-deterministic arguments. The next theorem states
that each function g in a sequential üobject refines
its abstract version g̃ in that for each properly nested
execution of g, there is a corresponding execution of g̃.
This is crucial to the soundness of our verification.

Theorem 4 (EXECREFINE). If g is a function belonging
to a sequential üobject such that all Assembly code in g
is in a CASM function satisfying all üSpark programming
invariants, and c is any core, then for each properly
nested execution τ of g on c there is a corresponding
execution τ̃ ∈ [[g̃]] such that: τ ≡ τ̃ , where τ ≡ τ̃ lifts
the per-state equivalence to the trace.

We use C verification tools to verify POCs directly on
üBP (NDCC99 programs) of üSpark. Theorem 4 allows
us to lift the verification results to üobject source code,
formally stated in the following theorem (we only show
the statement for invariant properties; the statement for
individual state assertions is similar).

Theorem 5 (INVCOMPOSE). Given any sequential üob-
ject s, let s̃ be the üBP abstraction of s. If an invariant
property ϕ holds on every execution of g̃(s), then ϕ is
an invariant property of every execution of s.

6. ÜSPARK HYPERVISOR IMPLEMENTATION

We applied üSpark to XMHF, an open-source micro-
hypervisor for the x86 32-bit hardware-virtualized plat-
form [72]. Originally, XMHF consists of a core hy-
pervisor and a single extension (called hypapp), that
together implement security-specific functionality. The
latest version (0.2.2) runs a Ubuntu 12.04 32-bit multi-
core guest OS with the core and hypapp at the highest
privilege level and has been used to develop a wide

7

variety of security applications [53], [73], [82], [84],
[85]. Our goal is üXMHF– an incrementally developed
and verified version with deprivileged components, and
multiple hypapps. As a first step, we refactor XMHF
into: (a) verified hypervisor (vh) üobjects for prime, sen-
tinel, core, üAPIs, and verified hypapps; (b) unverified
hypervisor (uh) üobjects for unverified hypapps; and (c)
unverified guest (ug) üobjects for the OS (Figure 2); §8
quantifies this refactoring effort.
6.1. Core, Hypapp and Guest üObjects – We instan-
tiate üXMHF core using three vh üobjects: xcstrt

(startup), xcihub (handling ug üobject intercepts), and
xcehub (runtime harware exception and watchdog han-
dling). We instantiate extensions described in §2 as
separate vh and uh üobjects and add support for multiple
hypapps within xcihub. Finally, we instantiate a ug
üobject, guest for the guest OS. The xcstrt üobject
gets control from the prime üobject (§6.2), invokes all
registered hypapp üobjects for initialization, and then
transfers control to guest. The xcihub üobject gets
control from the sentinel upon any intercept (§6.3) and
in turn invokes the hypapp üobjects for guest event
processing. Upon intercept handling, xcihub resumes
execution of guest ug üobject (Figure 2).
6.2. Prime üObject – The üXMHF boot-loader uses
the GETSEC[SENTER] instruction to setup a dynamic-
root-of-trust and invokes the prime üobject in a hardware
protected execution environment with the CPUs in a
known good state and interrupts and DMA disabled.

Prime first enumerates devices and uses VT-d IOMMU
to restrict their DMA to designated memory regions. It
then initializes the vh and uh PAE page tables and the
ug 2D EPT page tables for memory protections such
that: (i) vh page tables map vh üobject memory regions,
including MMIO, with supervisor privileges, and all uh
and ug üobject memory regions as user with read-write
permissions; (ii) each uh and ug page tables marks only
its own region, including MMIO, as user and present;
(iii) for uh üobjects, all vh üobject memory regions are
marked supervisor; and (iv) for ug üobjects all vh and
uh memory regions including MMIO are marked not-
present. Prime uses disjoint CPU I/O bitmaps (which
are marked supervisor within uh and ug üobject page
tables) for uh and ug üobjects’ legacy I/O isolation.

Finally, for each CPU in the system, prime: (a) acti-
vates protected-mode with paging and hypervisor-mode
via control registers CR0 and CR4 and the VMXON instruc-
tion; (b) sets up SYSENTER MSRs, interrupt descriptor
table and VM control structure (VMCS) to transfer
control to the sentinel; and (c) loads vh page tables in
CR3 and transfers control to xcstrt core startup üobject.
6.3. Sentinel üObject – For vh to vh üobject control
transfers, the sentinel uses an indirect JMP instruction.
The SYSEXIT and SYSENTER fast system call instruc-

tions are used vh to uh control transfers and vice-versa.
In such cases, the sentinel loads the uh page tables
into the CR3 register and transfers control to the uh
üobject entry point (or return address via the SYEXIT

instruction) at the de-privileged level. The sentinel uses
the VMLAUNCH instruction for a call from a vh to ug
üobject. It handles intercepts by transferring control to
the vh xcihub üobject and upon return from xcihub

resumes the ug üobject via the VMRESUME instruction.
In both cases, it loads the ug üobject EPTs prior to the
launch. The sentinel handles exceptions by transferring
control to the vh xcehub üobject. Upon return from
xcehub execution is resumed via the IRET instruction.
6.4. üAPI üObjects – Both the core and hypapp üob-
jects use üAPI üobjects to influence the ug üobject state.
This state includes the ug üobject EPTs and VMCS.
We implement üAPI üobjects ugmpgtbl and ugcpust

which present interfaces to the ug üobject EPTs and
VMCS respectively. We also implement an additional
üAPI üobject uhcpust as an interface to shared CPU
state between vh and uh üobjects (e.g., MSRs).
6.5. üObject Runtime Library – üObjects rely on a
set of common functionality implemented in the fol-
lowing libraries: (a) libuc with memory and string
functions; (b) libucrypt with SHA-1 functionality; (c)
libustub with üobject entry and sentinel CASM stubs;
and (d) libuhw for platform hardware access.

7. ÜSPARK HYPERVISOR VERIFICATION

7.1. Verification and Development Tools – We first
describe the verification and development tools we use.
7.1.1. Static Analysis with Frama-C: Frama-C [41] is
an industrial-strength C99 static analysis and verifi-
cation toolkit, written in type-safe OCaml. It has a
modular architecture and offers different plugins for
distinct styles of analysis. We use the following Frama-C
plugins: Deductive verification via Frama-C’s Weakest-
Precondition (WP) plugin enables the verification of
assume-guarantee behavior specifications on C functions.
Those specifications are expressed in the Annotated
ANSI C Specification Language (ACSL) [25] in terms
of the C source variables and operations. The WP plugin
verifies such ACSL specifications statically on the body
of the function by discharging verification conditions via
an ensemble of external SMT solvers. Abstract interpre-
tation via Frama-C’s Value plugin analyzes a program
using a sound abstraction of its concrete semantics. It is
used to prove ACSL assertions placed in the body of the
program that express partial specifications about program
variables, and can be combined with deductive verifica-
tion. Abstract syntax tree (AST) analysis via Frama-C’s
AST plugin performs syntactic analysis on control-flow
graphs and ASTs to enforce syntactic restrictions, e.g.,
the absence of primitives like function pointers.

8

7.1.2. Hardware Model: We have implemented a C99
hardware model for the commodity x86 hardware-
virtualized platform, by representing platform features
such as CPU registers and system-device states as C
variables and describing formally how the hardware
(should) behave. The hardware model is a re-usable
but trusted component. Our hardware model allows for
iterative development, modeling only portions of the
device used in proving security invariants. This design
principle coupled with serialization enforced by the
üSpark architecture blueprint (§4.4), enables us to keep
the hardware model simple and amenable to formal
validations. Various techniques exist to validate such a
hardware model [50], [58] which we plan on exploring
as future work (§11).
7.1.3. üSpark Frama-C Plugins: We built üSpark-
specific plugins on top of Frama-C as follows: (a)
übp – enforces üSpark blueprint; (b) ühwm – embeds
hardware model during verification; (c) ücasm –
substitutes Assembly mnemonics corresponding to
CASM instructions after verification; (d) ücc – enforces
general üSpark coding rules; (e) ümf – parses üobject
manifest; and (f) ücvf – performs composition check
(§7.2.1). These üSpark-specific plugins do not impact
the robustness of the Frama-C toolset as we do not
modify the kernel or standard plugins. Further, Frama-
C’s modular architecture helps us keep üSpark-specific
Frama-C plugins small, simple, and amenable to manual
audits to ensure correctness (§8.1).
7.1.4. Frama-C and CompCert: In keeping with our
longer term goal of guaranteeing that the verified source
code properties carry over to the binary, we employ
the CompCert [11], [12], [46] certified C99 com-
piler to compile üobjects. CompCert over-specifies C99
implementation-defined and unspecified behaviors and
is formally verified to produce semantically equivalent
Assembly from a C99 program. Our choice of Frama-
C and CompCert is further justified by their semantic
compatibility. We empirically tested Frama-C against
CompCert’s C99 specifications and found that both tools
had the same treatment of C99 implementation-defined
and unspecified behaviors. Further, both tools employ
an identical byte-addressable memory model with base
addresses and offsets. Therefore, they combine naturally
into a powerful analysis and development workflow
towards producing verified system binaries.
7.1.5. Soundness Via Weakening: We weaken our execu-
tion model in two cases to enable sound reasoning. First,
since current state-of-the-art static analyzers including
Frama-C largely assume sequential execution, we treat
all reads to DMA memory and all memory reads by a
concurrent üobject as non-deterministic, for verification
to soundly model interference from devices and other
cores. Second, we preclude use of C function pointers

1 void ugmpgtbl_setentry(u32 gsid, u32 addr, u64 v){
2 /*sysclog*/ {v=v&7; v&=~_X; v|=_R; v|=_W;}
3 /*hyperdep*/ {v=v&7; v&=~_X; v|=_R; v|=_W;}
4 /*@assert sysclog: (!(v&_X) && (v&_R) && (v&_W));*/
5 /*@assert hyperdep: (!(v&_X) && (v&_R) && (v&_W));*/
6 }

(a)
7 void ugmpgtbl_setentry(u32 gsid, u32 addr, u64 v){
8 /* sysclog */ {v=v&7; v&=~_X; v|=_R; v|=_W;}
9 /* aprvexec */ {v=v&7; v&=~_W; v|=_R; v|=_X;}

10 /*@assert sysclog: (!(v&_X) && (v&_R) && (v&_W));*/
11 /*@assert aprvexec: (!(v&_W) && (v&_R) && (v&_X));*/
12 }

(b)

Fig. 3: Composition check: (a) hyperdep and sysclog üobjects
both use ugmgtbl üAPI setentry interface to set guest mem-
ory page protections in a composable manner. (b) sysclog and
apprvexec both use setentry in a non-composable manner.

and CASM indirect jump instructions, which remain
challenging for current state-of-the-art static analyz-
ers [21]. In practice (§7.2), this weakining does not stop
us from verifying important security properties, since
such properties are implemented via sequential üobjects
using non-DMA memory.
7.2. üXMHF Verification – Verification of üXMHF
consists of: (a) üobject composition check, and (b)
verifying üSpark invariants (§5) and üobject local prop-
erties. Throughout this section we use vh, uh and ug
as acronyms for verified and unverified hypervisor and
unverified guest üobjects respectively.
7.2.1. üObject Composition Check: Resources accessed
by multiple üobjects are guarded by üAPI üobjects
(§4.3.1). Here we check that all üobjects are composable
over the set of üAPIs they use. At a high level, this is
checked by constructing an assertion that captures the
conjunction of the possible values that the two üobjects
write to a shared resource, and then verifying that this
assertion is not violated. More specifically, for every
üAPI üobject, an interface stub function is first created
using its manifest. Next, the stub is populated with
invariant definitions and assertions (if any) listed in the
manifest of every vh and uh non-üAPI üobject that in-
vokes it. Figure 3a shows an example stub for ugmpgtbl
üAPI üobject setentry interface with hyperdep and
sysclog hypapps enabled. Lines 2–6 are populated
using the corresponding hypapp üobject manifests (Ap-
pendix B). Figure 3b shows the same stub with sysclog
and aprvexec hypapps enabled. Finally, the assertions
in the stub are verified under non-deterministic inputs.
For example, hyperdep and syclog both set the read,
write and clear the execute bits for the memory protec-
tions of the provided guest memory-page (lines 2–3) and
are therefore composable; the assertions (lines 4–6) in
Figure 3a are valid. However, sysclog and aprvexec
are not composable (Figure 3b) since aprvexec sets
the execute bit while sysclog clears the execute bit in
the protections for the provided memory-page (lines 9–
10). Note, such composition check assertions are also
performed at runtime for üAPI invocations from uh

9

üobjects (§4.3.1). This composition check procedure
is üXMHF-specific, and a more general check is an
interesting direction for future work.
7.2.2. üObject Compositional Verification: As we dis-
cussed in §5, we first verify üSpark invariants via a
set of PAHs and specific POCs on all vh üobjects
including the prime and sentinel. §7.2.3 describes POC
verification in further detail. We then verify each of the
üXMHF core, hypapp and üAPI üobjects for their local
invariants. For brevity we summarize the hyperdep
üobject verification approach here. Appendix A lists the
invariants and verification approach for other üXMHF
üobjects. hyperdep preserves the following invariant
over the ugmpgtbl setentry üAPI: guest OS provided
memory pages are marked read-write and not executable.
We use deductive verification to verify the hyperdep

üobject activate method to ensure that the guest page
address that is passed is used as the parameter to the
ugmpgtbl üobject setentry method with read, write
and no-execute protections. Finally, we verify the üobject
runtime library (§6.5) for memory safety including be-
havior specifications for the memory and string functions
within libuc. Note, uh üobjects are not verified since
their properties follow from üAPI invariants. ensured by
our composition check (§7.2.1).
7.2.3. POC Verification: For brevity, we choose a sam-
pling of POCs from a few üSpark invariants (Inv4ü , Inv6ü ,
Inv6üprog, Inv7üprog, and Inv10ü ; see Appendix D) that show-
case the importance of all the verification techniques
described in §7.1.1. All the üSpark invariant POCs are
verified using a combination of these techniques. Note
that examples described below are necessary (but not
sufficient since they are a sample) for the high-level
proofs; for example the NESTEDCALL theorem (§5)
cannot be proved if there is no non-overlapping, unity-
mapped memory (Inv4ü) or DMA protection (Inv6ü).

Figure 4 shows a POC code snippet – from the vh
üobject page-table setup function within prime – for Inv4ü
verified using deductive verification. ACSL requires-
assign-ensure clause triples (lines 4–11) are used to
specify function behavior. In this case they specify that
every memory address in the page tables is disjoint with
virtual-to-physical unity mapping. ACSL loop invariant
clause allows specification of loops with data structure
invariants (lines 17–25). Finally, ACSL ghost variables
– C statements and variables only visible in specifica-
tions – are most notably used for modular reasoning
of nested function calls. For example, line 28 invokes
a support function for obtaining the memory protec-
tion of the specified memory address. This is aliased
into a ghost variable which can then be used within
the specification (line 29). In summary, the requires-
assigns-ensures clause triplet is sufficient to represent
the function behavior, and the loop invariants and ghost

1 //@ ghost u64 gflags[SZ_PDPT*SZ_PDT*SZ_PT];
2 /*@
3 ...
4 requires \valid(vhpgtbl1t[0..(SZ_PDPT*SZ_PDT*SZ_PT)-1]);
5 ...
6 assigns vhpgtbl1t[0..(SZ_PDPT*SZ_PDT*SZ_PT)-1];
7 assigns gflags[0..(SZ_PDPT*SZ_PDT*SZ_PT)-1];
8 ...
9 ensures (\forall u32 x; 0<=x< SZ_PDPT*SZ_PDT*SZ_PT ==>

10 ((u64)vhpgtbl1t[x] == (((u64)(x*SZB_4K)
11 & 0x7FFFFFFFFFFFF000ULL) | (u64)(gflags[x]))));
12 @*/
13 void gp_setup_vhmempgtbl(void){
14 u32 i, spatype, slabid=XMHF_SLAB_PRIME;
15 u64 flags;
16 ...
17 /*@
18 loop invariant 0 <= i <= (SZ_PDPT*SZ_PDT*SZ_PT);
19 loop assigns gflags[0..(SZ_PDPT*SZ_PDT*SZ_PT)],spatype,
20 flags,i,vhpgtbl1t[0..(SZ_PDPT*SZ_PDT*SZ_PT)];
21 loop invariant \forall integer x; 0 <= x < i ==>
22 ((u64)vhpgtbl1t[x]) == (((u64)(x*SZB_4K)
23 & 0x7FFFFFFFFFFFF000ULL) | (u64)(gflags[x]));
24 loop variant (SZ_PDPT*SZ_PDT*SZ_PT) - i;
25 @*/
26 for(i=0; i < (SZ_PDPT*SZ_PDT*SZ_PT); ++i){
27 spatype=_gp_getspatype(slabid, (u32)(i*SZB_4K));
28 flags=_gp_getptflags(slabid, (u32)(i*SZB_4K),spatype);
29 //@ ghost gflags[i] = flags;
30 vhpgtbl1t[i] = pae_make_pte((i*SZB_4K),flags);
31 }
32 }

Fig. 4: Frama-C ACSL behavior specification and deductive verifica-
tion: vh üobject memory page-table setup top-level function in prime.

prime.cS:
1 ...
2 ci_movl_eax_medi();
3 ...
hwm-cpu.c:

4 void ci_movl_eax_medi(){
5 ...
6 if(uhm_cpu_r_edi >= IMMULO && uhm_cpu_r_edi >= IMMUHI)
7 uhm_immuwr(uhm_cpu_r_edi,uhm_cpu_r_eax);
8 ...
9 }
hwm-iommu.c:

10 void _gxmhfhwm_iommu_wr(u32 addr, u32 val){
11 ...
12 if (addr==IMMUCTRL){ cbuhm_immuctrlwr(val); ... }
13 ...
14 }

prime-vdrv.c:
15 void cbuhwm_immuctrlwr(u32 val){
16 //@assert !(val & IMMUTE) || (val & IMMUTE) &&
17 // gxmhfhwm_iommu_retaddr == (u32)&gp_ret);
18 }
19 ...

Fig. 5: üSpark hardware model and proving IOMMU DMA protection.

variables within the function are used to prove the clause
triplet. ACSL is highly expressive with global and type
invariants, including first-order, polymorphic, recursive
and higher-order specifications [25].

Fig 5 shows a POC code snippet for Inv6ü verified
using abstract interpretation and the hardware model.
The snippet is part of the DMA protection setup function
within prime. Line 2 in Fig 5 shows üobject using a
designated CASM instruction to perform device I/O to
the IOMMU. The hardware model hooks this CASM
instruction to the IOMMU device model if the specified
I/O range falls within the IOMMU device space (lines 6–
7). The IOMMU modeling then simulates the required
logic based on the register accessed and value written
(line 12). The hardware model also invokes the appro-
priate verification driver callbacks whenever such device
registers are written to (line 12). This ensures required

10

Impl Annot Verification
Component (SLoC) Time[s] Mem[GB]

üObject libraries:
libuc 151 223 101 0.80
libucrypt 88 58 35 0.05
libustub 120 97 5 0.03
libuhw 1706 749 465 0.90
prime 2043 3176 1386 1.10
sentinel 672 501 423 0.75
üXMHF üAPI üObjects:
ugmpgtbl 128 91 174 0.65
ugcpust 73 46 118 0.70
uhcpust 26 23 99 0.50
üXMHF Core üObjects:
xcstrt 97 0 53 0.12
xcihub 247 202 147 0.60
xcehub 41 0 48 0.08
üXMHF Hypapp üObjects:
sysclog 255 213 174 0.75
sysclognw 1193 273 413 0.85
hyperdep 161 31 98 0.70
aprvexec 199 – – –

Total/Avg. 7200 5544 3739 0.57
üSpark üAPI composition check 18 0.23

üSpark Hardware model SLoC = 2079

Fig. 6: üXMHF üobject SLoC and verification time/memory.

device state invariants. For example, assertions in lines
16–17 of the IOMMU control register callback ensure
that DMA page-table protections when enabled always
point to the populated DMA page tables (which are
populated by the prime in a separate function not shown).
This ensures that devices can only perform DMA to
üobject DMA memory region. Similar techniques are
used to: (a) hook designated CASM instructions for
üobject access to system memory including ug üobject
memory regions; and (b) proving intra-üobject CFI in the
presence of both C and CASM functions by ensuring that
CASM functions respect the C ABI and preserve callee
registers and stack frames (via corresponding hardware
model callbacks, assertions, and ACSL annotations).

POCs for Inv6üprog and Inv7üprog are verified by analysing
the abstract syntax trees (AST) to preclude statements
involving function pointers in C functions and to en-
sure CASM functions always end with a CASM ret

instruction respectively. The POC for Inv10ü is verified via
CFG analysis to enforce üSpark blueprint conformance.
Similar AST-based techniques are employed to: (a) em-
bed hardware model statements, (b) substitute Assembly
mnemonics, and (c) ensure soundness of the hardware
model by precluding C functions from touching hard-
ware model functions and variables and vice-versa.

8. EVALUATION

8.1. System size and Verification TCB – üXMHF is
implemented in 7001 SLoC verified privileged code split
into 11 üobjects with 5544 lines of ACSL annotations
and 2079 lines of hardware model (Figure 6). We

übp ücasm ücc ümf ühwm ücvf Total

108 296 138 132 199 148 1021

Fig. 7: Frama-C üSpark specific plugins are written in OCaml and
build atop existing Frama-C kernel and standard plugins.

also implemented an unverified hypervisor extension
(aprvexec; 199 SLoC) to illustrate how unverified and
verified hypervisor üobjects interact. Depending on the
properties, üobject verification takes 48 seconds to 23
minutes, and up to 1.1 GB of memory. Cumulative
verification time is just over an hour, comparing favor-
ably to related verification efforts [34]. Compositional
verification enables each üobject to be (re-)verified sep-
arately. The prime üobject takes the longest to verify,
but typically does not change as often as other üobjects.
Decomposing prime into multiple üobjects can further
reduce its (re-)verification time significantly.

Our verification TCB comprises the ACSL annota-
tions, the hardware model (§7.1.2), and Frama-C with
associated plugins. Modularity of üobject programs helps
keep annotations small and feasible for manual review.
Various orthogonal techniques exist to validate our hard-
ware model [50], [58] that we plan to explore as future
work. Frama-C is an industrial-strength tool used in
many critical systems today [41]; we did not encounter
any soundness bugs in these tools (§9). Frama-C üSpark
specific plugins (totaling 1021 SLoC of OCaml; Fig-
ure 7) are modular, simple, and built upon the existing
Frama-C kernel and plugins making them amenable to
manual audits. Overall, our TCB compares favorably
with other prior approaches (Figure 8).
8.2. Developer Effort – üXMHF was developed and
verified in a year by a single system developer who
was new to Frama-C/ACSL. A fraction of the time was
spent adding implementation support for multiple hy-
papps with a greater part spent on porting to the üSpark
hypervisor architecture by creating required üobjects and
adding verification related harnesses and annotations.
Annotation-to-code ratio (ACR) ranges from 0.2:1 to
1.6:1 (Figure 6). For üobjects whose properties rely
solely on üAPI’s the ACR is small (e.g., hyperdep).
üObjects with properties requiring functional correctness
(e.g., sysclog and xcihub) have relatively larger ACR.
The prime and sentinel üobjects have the highest ACR
since they discharge most of the üSpark invariants.
8.3. Performance Measurements – All performance
benchmarks were carried out on a Dell Optiplex 9020
with an Intel Core-i5 4590 quad-core processor with
4GB of memory. All üobjects were compiled with full
compiler optimizations turned on.
8.3.1. üSpark Microbenchmarks: The cost of a CASM
NULL function call is only 12 clock cycles. Sentinel
call overhead for verified-to-verified üobject transitions
is 2x w.r.t NULL function call (Figure 9). This is due to

11

System/TCB Compiler HW Model Annot./Specs. Verification Tools Other

Verve In TCB NS NS Boogie, BoogieASM, TAL checker, Z3 Iso-gen, boot-loader
seL4 In TCB NS In TCB Isabelle/HOL, HOL4, Myreen, Sonolar, Z3 boot-loader
Hyper-V/Vcc In TCB In TCB In TCB Vcc, Boogie, Z3 boot-loader
Ironclad Out-of TCB In TCB In TCB Boogie, BoogieASM, Dafnyspec, Symdiff, Z3 None
mCertiKOS Out-of TCB NS In TCB Coq None
üSpark Out-of TCB In TCB In TCB Frama-C, Frama-C üSpark plugins, Z3, CVC3, Alt-Ergo None

Fig. 8: Development and Verification Tools Trusted Computing Base (TCB) Comparison: All systems in addition employ a preprocessor (either
built-in or stand-alone) for macro substitution and file inclusion and an assembler and linker to produce machine code; NS = Not supported

Verified– Verified–Unverified / Unverified–Verified
Verified SEG CR3 TSK HVM

2x 37x 48x 70x 278x

Fig. 9: üSpark Microbenchmarks: Sentinel üobject call overheads w.r.t
regular NULL function call in privileged mode.

CPUID RDMSR WRMSR XSETBV CRx VMCALL SIPI

100 98 98 100 100 99 99

Fig. 10: üXMHF Microbenchmarks: core intercept handling clock-
cycle latency as % of native XMHF performance without üSpark.

sysclog hyperdep aprvexec ropdet iousb ionet iodisk ioser

97 99 91 89 95 96 99 99

Fig. 11: üXMHF Hypapp and I/O Benchmarks as % of native XMHF
performance without üSpark.

SPEC ioz-read ioz-write compbench apache

100 100 100 100 100

Fig. 12: üXMHF Guest CPU and I/O Benchmarks as % of native
XMHF Guest performance without üSpark.

control transfers to the sentinel and üobject entry points
and return addresses via JMP instructions. For transitions
involving unverified üobjects the sentinel overhead is
broken up into: (a) software overhead such as register
saving, parameter marshalling, and call-policy enforce-
ment; and (b) hardware deprivileging overhead. As seen,
segmentation and CR3-based page tables provide the
lowest overheads (37x and 48x), but are still an order
of magnitude larger than the verified-to-verified sentinel
call overhead. Hardware deprivileging adds a significant
portion (upward of 60%) to the sentinel call in this case.
These overheads are comparable to existing unverified
disaggregated systems and micro kernels (§10).
8.3.2. üXMHF Microbenchmarks: For purposes of mi-
cro benchmarking we measure the üXMHF xcihub

üobject, which handles several intercepts required for
guest execution. üXMHF delivers near native XMHF
performance in all cases (Figure 10). We attribute the
small overhead for certain intercepts to the code refac-
toring using üobjects.
8.3.3. üXMHF Guest Benchmarks: We execute both
compute-bound and I/O-bound applications for
guest benchmarking purposes. For compute-bound
applications, we use the SPEC-INT 2006 suite. For
I/O-bound applications, we use the iozone (disk reads
and writes with 4K block size and 2GB file size),

compilebench (project compilation benchmark), and
Apache web server performance (ab tool with 200,000
transactions with 20 concurrent connections). üXMHF
does not affect native XMHF’s guest performance in all
cases (Figure 12).
8.3.4. üXMHF Application Benchmarks: We use the hy-
papps described in §6.1 along with another unverified
hypapp ropdet (which captures guest branch infor-
mation for ROP detection) for hypapp performance
benchmarking. We wrote a guest üobject that interacts
with the hypapps to leverage their services as follows.
For sysclog, activate syscall logging by setting the
syscall code page to no-execute and perform sample
syscalls. For hyperdep, set a data page to no-execute
and perform data read and write operations on that
page. For aprvexec, setup a code page for approved
execution, and invoke the hypapp to approve and lock
the page against writes, before executing a sort function
on that code page. Finally, for ropdet, register a test
function over which ROP detection is to be performed,
and a invoke the test function to collect branch in-
formation. Figure 11 shows the performance overhead
for these hypapps compared to native XMHF without
üSpark. Verified sysclog and hyperdep run close to
native XMHF speeds (2% avg. overhead). Unverified
aprvexec and ropdet incur higher overheads (9% and
11% respectively). The overhead is due to üAPI invariant
checks (<10%) and the sentinel cost of deprivileging,
shadow stack and parameter marshalling (§8.3.1).

For I/O performance benchmarks, we wrote a mix of
DMA I/O (usb and net) and programmed I/O operations
(disk and serial) within a hypervisor üobject. The I/O
performance overhead (Figure 11) is anywhere from 1-
5% with the DMA-based I/O incurring more overhead.
We attribute the higher DMA-based I/O overhead to
the IOMMU page tables for DMA access. Note that
üSpark does not actively interpose on any I/O operations,
which results in a much lower overhead. These I/O
overheads also match up to existing micro hypervisor
I/O architecture overheads [67], [72], [85].

9. EXPERIENCE AND LESSONS LEARNED

9.1. Frama-C – The WP plugin’s limited casting sup-
port helped detect erroneous esoteric casts, e.g., pointer
to int/u8. While the Value plugin cannot propagate states
to arbitrarily large loops, the semantic unrolling option

12

helped propagate states only for desired functions so
memory/time resources can be well spent. WP loop
invariants are versatile in supporting unbounded loops
with nesting. WP discharges proofs more effectively
when operating over single-dimensional array accesses
for mutating assignments and invariants and simple state-
ments using shift and bit-wise operators. WP also caused
proof failures in certain cases with local variable alias-
ing of function parameters; using parameter variables
directly ameliorated the issue. We did not encounter any
soundness bugs in Frama-C and its plugins.
9.2. Verification Theories – Automated verification re-
sults vary by theory, e.g., Alt-Ergo and Z3 failed to
discharge a few verification conditions (VC) that CVC3
handled. Frama-C’s ability to combine provers was very
useful; CVC3, Z3 and Alt-Ergo together solved all the
VCs generated during verification.
9.3. Annotations – ACSL is versatile in its support for
writing partial specifications (e.g., memory safety of
SHA-1) and assertions as well as complete specifications
(e.g., page-table setup). Futher, ACSL annotations use
actual C variables and operations. This expressivity spec-
trum thus allows system programmers to easily transition
into the verification domain by initially using simple
assertions and function contracts (partial specifications)
and iteratively mastering complete specifications.
9.4. CompCert – The C99 subset handled by CompCert
suffices to implement most systems-level software con-
structs. However, struct bit fields with packing and align-
ment within struct fields are currently unsupported. We
added methods with bitwise operators to pack, unpack,
deconstruct, and align such variables in the sources.

10. RELATED WORK

10.1. Unverified monolithic – SELinux [66], AppAr-
mor [1] and FBAC [59] are some examples of OS kernel
modifications that add features to an existing (privileged)
kernel to enforce various access control policies. Such
approaches suffer from the lack of assurance and sepa-
ration: a bug in an extension or the core can exist, and
then affect other parts of the system arbitrarily.
10.2. Unverified disaggregation – Xen/Xoar [17] con-
verts Xen into deprivileged partitions. NOVA [67] de-
privileges everything (including VMM modules), except
for a small privileged micro kernel. Safe composition of
OS kernel extensions include extensible operating sys-
tems [10], [15], [20], [23], [39], [61], kernel driver isola-
tion [13], [28], [47], [48], [69], [70], [77], interposition
mechanisms [29], [35], [37], [40] and API compatability
libraries [5], [7], [9], [30], [56], [78]. Xax [19] confines
untrusted application code to an ABI for accessing OS
services. SGX [4] protects application code from (buggy)
privileged code. Disaggregation brings mere isolation but
no formal guarantees on its own.

10.3. Verified sandboxing – SFI [52], [54], [60], [75],
[81] is a software-based approach for application-level
memory isolation but lacks support for low-level privi-
leged instructions and hardware device access, which are
necessary for hypervisor and its extensions. Also, SFI
employs unverified binary rewriting which can change
the semantics of the program and break invariants nec-
essary for compositional verification. Singularity [36]
sacrifices legacy compatibility with a complete redesign
of a OS written in type-safe languages (MSIL/TAL) and
uses software mechanisms to isolate processes (SIP) and
supports only memory and type-safety properties.
10.4. Verified kernels – seL4 [43] verifies full func-
tional correctness of the C implementation (7500 LOC)
of the micro kernel by showing that it refines an abstract
specification. Their specifications don’t support abstrac-
tions among the kernel or the different kernel modules.
These interdependencies often lead to more complex
invariants which are difficult to prove (20 person years).
Further, seL4 does not allow adding properties using un-
trusted services; such additions require direct integration
into the kernel and lengthy re-verification. Furthermore,
there is no support for Assembly (ASM) or device states,
which precludes verification of low-level code interact-
ing with devices; (1200 C and 500 ASM SLoC remain
unverified). mCertiKOS [31] follows a similar approach
to seL4 but makes the abstract specification layered to
reduce the interdependencies among the kernel and var-
ious extensions and makes the verification process more
tractable for an admittedly stripped down version of the
original CertiKOS kernel (single-core, non-preemptible
custom guest OS, basic process and syscall handling).
There is no hardware model and support for ASM is
limited to only general-purpose registers. Adding extra
system instruction support and device models does not
seem trivial; even the stripped down version of the kernel
has 300 C and 170 ASM SLoC unverified. This is
attributed to memory model limitations of their method-
ology [31]. Lastly, both mCertiKOS and seL4 require the
developer to write line-for-line specifications for C/ASM
code in a different abstract language (Isabelle/HOL or
Coq/Ocaml/Lasm) with a very steep learning curve.

The VCC project [16], [45] verifies the functional
correctness of a fixed Hyper-V hypervisor codebase run-
ning a multi-CPU guest, via automated theorem proving.
However, the code annotations do not support abstrac-
tions among the core hypervisor or drivers. This leads
to complex invariants due to interdependencies; only
20% of the hypervisor code-base has been verified [16].
Further, their ASM verification methodology and lack
of a full hardware model only allows proving memory
safety and arithmetic properties for ASM functions while
precluding compiler optimizations for the corresponding
C callee functions [51]. XMHF [72] employs the CBMC

13

model checker with assertions on the C code of a
micro-hypervisor to verify memory integrity. However,
multiple extensions or composing other properties on top
of memory integrity are unsupported. Further, that effort
assumes interface confinement and leaves out 422 C and
388 ASM SLoC due to limitations of CBMC with large-
loops and lack of a hardware model.
10.5. Verified System Stack – In Verve [80], a sim-
plified OS and applications are verified for type and
memory safety using a Hoare-style verification condition
(VC) generator and automated theorem proving. Iron-
clad [33] extends Verve with support for higher-level
application properties. High-level specifications (written
in Dafny) are translated to corresponding code with
VCs discharged via an automated theorem prover; the
verification took 3 person-years. Verisoft [6] integrates
hardware and software, with high-level specifications
written in C0 (a tiny subset of C semantics) and refined
down to a custom CPU semantics. The verification took
20 person-years on a simple OS with only a disk driver.
System stack verification approaches, while powerful,
sacrifice compositionality, legacy compatibility and per-
formance. Any changes to kernel code and/or extension
configuration requires lengthy re-verification (in person
years). Further, the entire system software stack has to be
re-implemented in type-safe languages such as C# and
TAL (in Verve) or in high-level Dafny specifications (in
Ironclad) or on a non-commodity CPU abstraction (in
Verisoft). Furthermore, these approaches lack support for
co-existence with unverified programs or a guest OS.

11. LIMITATIONS AND FUTURE WORK

We now discuss current limitations of our approach with
pointers to future work towards bridging these gaps.
11.1. Hardware Model – Our hardware model is cur-
rently a trusted component. However, orthogonal tech-
niques such as path-exploration lifting [50] and mecha-
nized x86-multiprocessor semantics [58] provide a solid
foundation on which we plan to build upon and validate
our hardware model in the future.
11.2. CASM and Certified Compilation – Our high-
level proofs depend on Compcert’s specification of the C
memory and register semantics and CASM’s adherence
to those semantics (discharged as invariants on the
source-code and our hardware model) to ensure that
the C and Assembly code operate on disjoint state. In
the future, we plan on leveraging recent developments
with Compcert such as the ability to compile and link
multi-module source programs [68] to cleanly extend
the bi-simulation proof of the CompCert compiler to
encompass hardware state and Assembly code. Future
work also involves proving (e.g., via bi-simulation) the
semantic equivalence between the hardware model and
the corresponding Assembly instructions and demon-

strating the semantic synergy between CompCert, CASM
and the Frama-C kernel more rigorously for proved
properties to translate to the binary.
11.3. Functional Verification – Our focus in this pa-
per is on security invariants and trace properties and
functional correctness to support such properties. We
are optimistic that liveness properties and full-functional
correctness are achievable future goals and not any more
harder than existing approaches [31], [33], [43].
11.4. Concurrency – We have shown that a practical
multi-threaded system with interesting security proper-
ties can be built by dealing with a serialized execution
model and sequential verification in lieu of complex
concurrent verification. However, we do realize the
importance of relaxing our serialized execution model
especially in high-performance computing environments
and plan on leveraging source-level multi-threaded ver-
ification (e.g., Frama-C mthread plugin [24]) to address
concurrency in the future.
11.5. Soundness of Tools – Similar to existing ap-
proaches, we assume that the verification tools such as
Frama-C with associated plugins and back-end theorem
provers such as Z3, CVC3 and Alt-Ergo are sound
(§8.1,§3.3). Discharging this assumption, while a de-
sirable goal, is currently an open and hard problem in
the face of formal methods. However, seminal break-
throughs such as certified software model-checking [55]
and formal verification of C static analyzers [38] give
us hope that proving soundness of our verification tools
will indeed be possible in the future.
11.6. System Software Applicability – Our future
work involves exploring the applicability of üSpark to
more general-purpose hypervisors (e.g., Xen and KVM).
The immediate challenges we envision there include
unraveling complex data structures, supporting dynamic
memory allocations and use of indirect function calls in
addition to supporting some form of concurrency. Aside
from hypervisors, we are also exploring the applicability
of üSpark to other system software subsystems such as
the BIOS, device firmware and the operating-system
kernel and drivers including vertical integration among
these stacked subsystems.

12. CONCLUSION

We presented überSpark, an innovative architecture en-
forcing verifiable object abstractions in low-level C and
Assembly languages and leveraging them in combination
with off-the-shelf C software verifiers and certifying
compilers to produce high assurance hypervisors for
commodity platforms. We incrementally developed and
verified a commodity x86 micro-hypervisor using üS-
park, and performed a comprehensive evaluation which
shows automated compositional verification with modest
development effort and minimal runtime overhead.

14

Availability: überSpark and üXMHF sources are
available at: http://uberspark.org

Acknowledgements: We thank the anonymous re-
viewers for their detailed comments. We also thank
Úlfar Erlingsson and Martín Abadi for their feedback
and insights. This work was partially supported by
the AFOSR MURI on Science of Cybersecurity, the
NSA/CMU Science of Security Lablet, and the NSF
CNS-1018061 grant. Copyright 2016 CyLab and CMU 2.

REFERENCES

[1] Novell, AppArmor, and SELinux Comparison.
http://www.novell.com/linux/security/apparmor/
selinux_comparison.html.

[2] CVE-2008-3687: Heap-based buffer overflow in
Xen 3.3, when compiled with the XSM:FLASK
module, allows unprivileged domain users (domU)
to execute arbitrary code via the flaskop hypercall.
https://cve.mitre.org/, 2008.

[3] VMSA-2009-0006: VMware patches for ESX and
ESXi resolve a critical security vulnerability. http:
//www.vmware.com/security/advisories/, 2009.

[4] Software Guard Extensions Programming Refer-
ence 329298-001. http://software.intel.com, 2013.

[5] http://cygwin.com, 2014.
[6] E. Alkassar, M. A. Hillebrand, D. C. Leinenbach,

N. W. Schirmer, A. Starostin, and A. Tsyban.
Balancing the load: Leveraging semantics stack for
systems verification. J. Autom. Reasoning, 42(2-
4):389–454, 2009.

[7] J. Appavoo, M. Auslander, D. Edelsohn, D. D.
Silva, O. Krieger, M. Ostrowski, B. Rosenburg,
R. W. Wisniewski, and J. Xenidis. Providing a linux
api on the scalable k42 kernel. In ATC, 2003.

[8] M. Barnett, R. DeLine, M. Fähndrich, K. R. M.
Leino, and W. Schulte. Verification of object-
oriented programs with invariants. Journal of
Object Technology, 3(6):27–56, June 2004. Work-
shop on Formal Techniques for Java-like Programs
(FTfJP), ECOOP 2003.

2This material is based upon work funded and supported by the Department of
Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University
for the operation of the Software Engineering Institute, a federally funded re-
search and development center. NO WARRANTY. THIS CARNEGIE MELLON
UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVER-
SITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED
TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY
OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADE-
MARK, OR COPYRIGHT INFRINGEMENT. [Distribution Statement A] This
material has been approved for public release and unlimited distribution. Please
see Copyright notice for non-US Government use and distribution. DM-0003658

[9] A. Baumann, D. Lee, P. Fonseca, L. Glendenning,
J. R. Lorch, B. Bond, R. Olinsky, and G. C. Hunt.
Composing os extensions safely and efficiently
with bascule. In Proc. of EuroSys, 2013.

[10] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
M. E. Fiuczynski, D. Becker, C. Chambers, and
S. Eggers. Extensibility safety and performance in
the SPIN operating system. In Proc. of SOSP, 1995.

[11] S. Blazy, Z. Dargaye, and X. Leroy. Formal
verification of a C compiler front-end. In FM, 2006.

[12] S. Boldo, J.-H. Jourdan, X. Leroy, and
G. Melquiond. A formally-verified C compiler
supporting floating-point arithmetic. In In Proc. of
IEEE ARITH, 2013.

[13] S. Boyd-Wickizer and N. Zeldovich. Tolerating
malicious device drivers in linux. In TEC, 2010.

[14] C. Chen, P. Maniatis, A. Perrig, A. Vasudevan, and
V. Sekar. Towards verifiable resource accounting
for outsourced computation. In ACM VEE, 2013.

[15] D. R. Cheriton and K. J. Duda. A caching model
of os kernel functionality. In OSDI, 1994.

[16] E. Cohen, M. Dahlweid, M. A. Hillebrand,
D. Leinenbach, M. Moskal, T. Santen, W. Schulte,
and S. Tobies. VCC: A Practical System for
Verifying Concurrent C. In TPHOLS, 2009.

[17] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker,
T. Deegan, P. Loscocco, and A. Warfield. Breaking
up is hard to do: Security and functionality in a
commodity hypervisor. In Proc. of SOSP, 2011.

[18] A. Dinaburg, P. Royal, M. Sharif, and W. Lee.
Ether: malware analysis via hardware virtualization
extensions. In Proc. of CCS, 2008.

[19] J. R. Douceur, J. Elson, J. Howell, and J. R.
Lorch. Leveraging legacy code to deploy desktop
applications on the web. In Proc. of OSDI, 2008.

[20] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr.
Exokernel: An operating system architecture for
application-level resource management. In Proc.
of SOSP, 1995.

[21] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe,
M. Rinard, H. Okhravi, and S. Sidiroglou-Douskos.
Control Jujutsu: On the weaknesses of fine-grained
control flow integrity. In Proc. of CCS, 2015.

[22] A. Fattori, R. Paleari, L. Martignoni, and
M. Monga. Dynamic and transparent analysis
of commodity production systems. In Proc. of
IEEE/ACM ASE 2010, 2010.

[23] B. Ford, M. Hibler, J. Lepreau, P. Tullmann,
G. Back, and S. Clawson. Microkernels meet
recursive virtual machines. In Proc. of OSDI, 1996.

[24] Frama-C. Mthread plug-in. http://frama-c.com/
mthread.html, 2012.

15

http://uberspark.org
http://www.novell.com/linux/security/apparmor/selinux_comparison.html
http://www.novell.com/linux/security/apparmor/selinux_comparison.html
https://cve.mitre.org/
http://www.vmware.com/security/advisories/
http://www.vmware.com/security/advisories/
http://cygwin.com
http://frama-c.com/mthread.html
http://frama-c.com/mthread.html

[25] Frama-C Team. ACSL: ANSI/ISO C Specification
Language v1.9. http://www.frama-c.com, 2015.

[26] J. Franklin, S. Chaki, A. Datta, and A. Seshadri.
Scalable Parametric Verification of Secure Systems:
How to Verify Reference Monitors without Worry-
ing about Data Structure Size. In IEEE S&P, 2010.

[27] J. Franklin, A. Seshadri, N. Qu, S. Chaki, and
A. Datta. Attacking, Repairing, and Verifying
SecVisor: A Retrospective on the Security of a
Hypervisor. Technical Report CMU-CyLab-08-
008, CMU CyLab, 2008.

[28] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan,
M. M. Swift, and S. Jha. The design and imple-
mentation of microdrivers. In ASPLOS, 2008.

[29] D. P. Ghormley, D. Petrou, S. H. Rodrigues, and
T. E. Anderson. Slic: An extensibility system for
commodity operating systems. In ATC, 1998.

[30] D. Given. http://lbw.sf.net/, 2010.
[31] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. N.

Wu, S.-C. Weng, H. Zhang, and Y. Guo. Deep
specifications and certified abstraction layers. In
Proc. of POPL, 2015.

[32] N. Hardy. Keykos architecture. SIGOPS Oper. Syst.
Rev., 19(4):8–25, Oct. 1985.

[33] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan,
B. Parno, D. Zhang, and B. Zill. Ironclad apps:
End-to-end security via automated full-system ver-
ification. In Proc. of OSDI, 2014.

[34] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan,
B. Parno, D. Zhang, and B. Zill. Ironclad apps:
End-to-end security via automated full-system ver-
ification. In Proc. of OSDI, 2014.

[35] G. Hunt and D. Brubacher. Detours: Binary inter-
ception of win32 functions. In WINSYM, 1999.

[36] G. C. Hunt and J. R. Larus. Singularity: Rethinking
the software stack. SIGOPS Oper. Syst. Rev.,
41(2):37–49, Apr. 2007.

[37] M. B. Jones. Interposition agents: Transparently
interposing user code at the system interface.
SIGOPS Oper. Syst. Rev., 27(5):80–93, Dec. 1993.

[38] J.-H. Jourdan, V. Laporte, S. Blazy, X. Leroy,
and D. Pichardie. A formally-verified c static
analyzer. In Proceedings of the 42Nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’15, pages 247–
259, New York, NY, USA, 2015. ACM.

[39] M. F. Kaashoek, D. R. Engler, G. R. Ganger,
H. M. Briceño, R. Hunt, D. Mazières, T. Pinckney,
R. Grimm, J. Jannotti, and K. Mackenzie. Ap-
plication performance and flexibility on exokernel
systems. In Proc. of SOSP, 1997.

[40] Y. A. Khalidi and M. N. Nelson. Extensible

file systems in spring. SIGOPS Oper. Syst. Rev.,
27(5):1–14, Dec. 1993.

[41] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles,
and B. Yakobowski. Frama-c: A software analysis
perspective. FAC, 27(3):573–609, 2015.

[42] G. Klein, J. Andronick, K. Elphinstone, T. Murray,
T. Sewell, R. Kolanski, and G. Heiser. Com-
prehensive formal verification of an OS micro-
kernel. ACM Transactions on Computer Systems,
32(1):2:1–2:70, Feb. 2014.

[43] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood. seL4: formal verification of an OS
kernel. In Proc. of SOSP, 2009.

[44] K. Kortchinsky. Cloudburst: A VMware guest to
host escape story. Black Hat, 2009.

[45] D. Leinenbach and T. Santen. Verifying the Mi-
crosoft Hyper-V Hypervisor with VCC. In FM,
2009.

[46] X. Leroy. Formal certification of a compiler back-
end, or: programming a compiler with a proof
assistant. In Proc. of POPL, 2006.

[47] B. Leslie, P. Chubb, N. Fitzroy-dale, S. Gotz,
C. Gray, L. Macpherson, D. Potts, Y. Shen, K. El-
phinstone, and G. Heiser. User-level device drivers:
Achieved performance. In Journal of Computer
Science and Technology, 2005.

[48] J. LeVasseur, V. Uhlig, J. Stoess, and S. Gotz. Un-
modified device driver reuse and improved system
dependability via virtual machines. In OSDI, 2004.

[49] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Hy-
pervisor support for identifying covertly executing
binaries. In Proc. of USENIX Security, 2008.

[50] L. Martignoni, S. McCamant, P. Poosankam,
D. Song, and P. Maniatis. Path-exploration lifting:
Hi-fi tests for Lo-fi emulators. SIGPLAN Not.,
47(4):337–348, Mar. 2012.

[51] S. Maus, M. Moskal, and W. Schulte. Vx86: x86
assembler simulated in C powered by automated
theorem proving. In Proc. of AMAST, 2008.

[52] S. McCamant and G. Morrisett. Evaluating SFI for
a CISC architecture. In USENIX Security, 2006.

[53] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta,
V. Gligor, and A. Perrig. TrustVisor: Efficient TCB
reduction and attestation. In IEEE S&P, May 2010.

[54] G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, and
E. Gan. Rocksalt: Better, faster, stronger SFI for
the x86. SIGPLAN Not., 47(6):395–404, 2012.

[55] K. S. Namjoshi. Certifying model checkers. In
Computer Aided Verification, 13th International
Conference, CAV 2001, Paris, France, July 18-22,

16

http://www.frama-c.com
http://lbw.sf.net/

2001, Proceedings, pages 2–13, 2001.
[56] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olin-

sky, and G. C. Hunt. Rethinking the library os from
the top down. SIGARCH Comput. Archit. News,
39(1):291–304, Mar. 2011.

[57] D. Quist, L. Liebrock, and J. Neil. Improving an-
tivirus accuracy with hypervisor assisted analysis.
J. Comput. Virol., 7(2), May 2011.

[58] S. Sarkar, P. Sewell, F. Z. Nardelli, S. Owens,
T. Ridge, T. Braibant, M. O. Myreen, and J. Al-
glave. The semantics of x86-cc multiprocessor
machine code. SIGPLAN, 44(1):379–391, 2009.

[59] Z. C. Schreuders, C. Payne, and T. McGill.
Techniques for automating policy specification for
application-oriented access controls. In Proc. of
ARES, 2011.

[60] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko,
K. Schimpf, B. Yee, and B. Chen. Adapting
software fault isolation to contemporary cpu archi-
tectures. In Proc. of USENIX Security, 2010.

[61] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith.
Dealing with disaster: Surviving misbehaved kernel
extensions. In Proc. of OSDI, 1996.

[62] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVi-
sor: A tiny hypervisor to provide lifetime kernel
code integrity for commodity OSes. In Proc. of
SOSP, 2007.

[63] J. S. Shapiro, J. M. Smith, and D. J. Farber. Eros: A
fast capability system. In SOSP, SOSP ’99, pages
170–185, 1999.

[64] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure
in-vm monitoring using hardware virtualization. In
Proc. of CCS, 2009.

[65] L. Singaravelu, C. Pu, H. Haertig, and C. Helmuth.
Reducing TCB complexity for security-sensitive
applications: Three case studies. In EuroSys, 2006.

[66] S. Smalley, C. Vance, and W. Salamon. Implement-
ing SELinux as a Linux LSM. NSA, 2001.

[67] U. Steinberg and B. Kauer. Nova: a
microhypervisor-based secure virtualization
architecture. In Proc. of Eurosys, 2010.

[68] G. Stewart, L. Beringer, S. Cuellar, and A. W.
Appel. Compositional compcert. In POPL, pages
275–287, 2015.

[69] M. M. Swift, B. N. Bershad, and H. M. Levy.
Improving the reliability of commodity operating
systems. In Proc. of SOSP, 2003.

[70] M. M. Swift, B. N. Bershad, and H. M. Levy.
Improving the reliability of commodity operating
systems. ACM TOCS, 23(1):77–110, Feb. 2005.

[71] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces:
Making trust between applications and operating

systems configurable. In OSDI, 2006.
[72] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. New-

some, and A. Datta. Design, implementation and
verification of an extensible and modular hypervi-
sor framework. In Proc. of IEEE S&P, 2013.

[73] A. Vasudevan, B. Parno, N. Qu, V. D. Gligor, and
A. Perrig. Lockdown: Towards a safe and practical
architecture for security applications on commodity
platforms. In Proc. of TRUST, 2012.

[74] A. Vasudevan, N. Qu, and A. Perrig. Xtrec: Secure
real-time execution trace recording on commodity
platforms. In Proc. of IEEE HICSS, 2011.

[75] R. Wahbe, S. Lucco, T. E. Anderson, and S. L.
Graham. Efficient software-based fault isolation.
SIGOPS OSR, 27(5):203–216, Dec. 1993.

[76] Z. Wang, C. Wu, M. Grace, and X. Jiang. Isolating
commodity hosted hypervisors with hyperlock. In
Proc. of EuroSys 2012, 2012.

[77] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer,
and F. B. Schneider. Device driver safety through
a reference validation mechanism. In OSDI, 2008.

[78] Wine. http://www.winehq.org/, 2014.
[79] X. Xiong, D. Tian, and P. Liu. Practical protection

of kernel integrity for commodity os from untrusted
extensions. In Proc. of NDSS, 2011.

[80] J. Yang and C. Hawblitzel. Safe to the last
instruction: Automated verification of a type-safe
operating system. In Proc. of PLDI, 2010.

[81] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula, and N. Fulla-
gar. Native client: A sandbox for portable, untrusted
x86 native code. In Proc. of IEEE S&P, 2009.

[82] M. Yu, V. D. Gligor, and Z. Zhou. Trusted display
on untrusted commodity platforms. In ACM CCS,
pages 989–1003, 2015.

[83] F. Zhang, J. Chen, H. Chen, and B. Zang. Cloud-
visor: retrofitting protection of virtual machines in
multi-tenant cloud with nested virtualization. In
Proc. of SOSP, 2011.

[84] Z. Zhou, V. D. Gligor, J. Newsome, and J. M.
McCune. Building verifiable trusted path on com-
modity x86 computers. In IEEE S&P, 2012.

[85] Z. Zhou, M. Yu, and V. D. Gligor. Dancing with
Giants: Wimpy Kernels for On-demand Isolated
I/O. In Proc. of IEEE S&P, 2014.

17

http://www.winehq.org/

APPENDIX A
VERIFICATION OF ÜXMHF ÜOBJECTS LOCAL

INVARIANT PROPERTIES

We now describe our verification approach in detail
for verifying the invariant properties of the üXMHF
üobjects shown in Figure 13. For all the üobjects we
verify via deductive verification that the üobject entry
point function transfers control to the appropriate method
handler for a given public method.

We verify the üAPI üobjects via abstract interpreta-
tion. For the uhcpust üobject we verify that the write

method, in case of a write to MSR EFER, always pre-
serves the EFER bits required for üSpark functionality.
For the ugmpgtbl üobject we verify that the setentry

method’s entry parameter does not fall within hypervisor
memory regions. Finally, for the ugcpust üobject we
verify that the write method disallows writes to any
host-specific state in the guest VMCS.

For the xcihub üobject we employ deductive verifica-
tion to verify the main method such that, for any given
intercept a special function hcbinvoke is called with
the intercept type and associated parameters. hcbinvoke
is then verified to ensure that it calls all the registered
hypapp üobjects for that intercept.

For the sysclog üobject we employ deductive veri-
fication to first verify that the init method invokes the
ugmpgtbl üobject setentry method with the syscall
page address with read and no-execute protections. We
then verify that the syscall trap handler obtains syscall
information via a call to the ugcpust üobject read

method and stores this information to the network log
buffer via a call to the sysclognw üobject log method.

We verify the sysclognw üobject via a combination
of deductive verification and abstract interpretation. We
use deductive verification to verify the log method to
ensure that: (a) the buffer passed in as parameters is
stored in the network buffer data structure, and (b) when
the buffer is full, its contents are copied into the üobject
dmadata region, buffer is reset, and the network send
function is invoked. We then verify the send function
via abstract interpretation to ensure that it programs the
network card hardware to read from the dmadata region,
transmit the buffer, and wait for end of transmission
signal.

We use deductive verification to verify the hyperdep

üobject activate method to ensure that the guest page
address that is passed is used as the parameter to the
ugmpgtbl üobject setentry method with read, write
and no-execute protections.

Note, aprvexec (unverified) üobject is not verified
since its properties follow from the ugmpgtbl üAPI
invariants ensured by our composition check as described
in §7.2.1.

üObject Type Invariant Property

xcihub vh On intercept invoke corresponding hypapp
handler

ugcpust vh Writes to host state only by prime or sentinel
uhcpust vh No writes to host MSR EFER
ugmpgtbl vh No mapping of hypervisor memory regions
hyperdep vh Guest OS provided memory-pages are

marked read-write and not executable
sysclog vh On system call trap intercept, log syscall

information to network log buffer
sysclognw vh Log info in network log buffer and transmit

buffer when full
aprvexec uh Guest OS approved code pages are always

marked read-only and executable

Fig. 13: üXMHF Core, üAPI and Hypapp üobject invariants; vh =
verified hypervisor üobject, uh = unverified hypervisor üobject

18

APPENDIX B
ÜXMHF ÜOBJECT USE MANIFEST

Figure 14 shows partial üobject manifest listings for
the following üXMHF üobjects: sysclog, sysclognw,
hyperdep, aprvexec, ugmpgtbl, ugcpust and
rguest. The salient manifest definitions are described
below:
• üobject type (TY) definition indicates the type of

the üobject which can be verified hypervisor (vh),
unverified hypervisor (uh) or unverified guest (ug)

• üobject local memory resource (RML) definitions
identify the üobject code, data, stack and dmadata
extents

• üobject non-local memory resource (RMG) defini-
tions identify access to memory belonging to other
üobjects. Valid access types are READ and WRITE.
This is used for accessing guest OS (rguest)
memory regions

• üobject device resource definition (RD) indicates
the devices (if any) allocated to the üobject.
The INCL entry identifies devices to be included
(with PCI device and vendor IDs); a special en-
try 0xffff:0xffff indicates allocation of all system
devices that are not allocated to other hypervisor
üobjects

• üobject CPU instruction resource (RC) definition in-
dicates which privileged CASM instruction macros
(if any) the üobject is allowed to use

• üobject callee üobject dependency (SD) definitions
list üobjects a given üobject can invoke

• üobject üAPI call capabilities and invariant defi-
nitions (UI) provide information about the üAPI’s
the üobject can invoke along with the corresponding
invariants preserved

• üobject üAPI interface declaration definitions are
only applicable to üAPI üobjects and indicate all the
üAPI interface declarations that the üAPI üobject
supports

The üSpark ümf Frama-C plugin uses üobject mani-
fests to output a C99 file with a üobject information data
structure which is used by: (a) prime to setup üobject
page tables and resource allocations; (b) sentinel to
enforce üobject to üobject call capabilities; and (c) üAPI
üobjects to restrict üAPI interface invocations. üObject
manifests are also used by the üSpark ücvf Frama-C
plugin to generate üAPI stubs for composition checks
and by the üSpark ücc Frama-C plugin to restrict CASM
privileged instruction use within a given üobject. Finally,
the üSpark übp Frama-C plugin uses üobject manifests
to enforce üSpark blueprint conformance.

sysclog.manifest:
1 ...
2 TY:vh:::
3 ...
4 RML:CODE:0x200000::
5 RML:DATA:0x200000::
6 RML:STACK:0x600000::
7 RML:DMADATA:0x200000::
8 ...
9 RMG:READ:ugrguest::

10 ...
11 SD:ugmpgtbl:::
12 ...
13 UI:ugmpgtbl:GETENTRY:(void)0;:(void)0;
14 UI:ugmpgtbl:SETENTRY:{{v=v&7;
15 v&=~_X; v|=_R; v|=_W;}}:
16 /*@assert (!(v&_X) && (v&_R) && (v&_W));*/
17 ...

sysclognw.manifest
18 ...
19 RD:INCL:0x8086:0x10b9::
20 ...

hyperdep.manifest
21 ...
22 SD:ugmpgtbl:::
23 ...
24 UI:ugmpgtbl:GENTRY:(void)0;:(void)0;
25 UI:ugmpgtbl:SENTRY:{v=v&7; v&=~_X;
26 v|=_R; v|=_W;}:/*@assert !(v&_X)
27 && (v&_R) && (v&_W));*/
28 ...

aprvexec.manifest
29 ...
30 TY:uh:::
31 ...
32 SD:ugmpgtbl:::
33 ...
34 UI:ugmpgtbl:GENTRY:(void)0;:(void)0;
35 UI:ugmpgtbl:SENTRY:{v=v&7; v&=~_W;
36 v|=_R; v|=_X;}:/*@assert (!(v&_W) &&
37 (v&_R) && (v&_X));*/
38 ...

ugmpgtbl.manifest
39 ...
40 UD:GENTRY:u64 ugmpgtbl_getentry(u32 gsid, u32 addr)::
41 UD:SENTRY:void ugmpgtbl_setentry(u32 gsid,u32 addr,u64 v)::
42 ...

ugcpust.manifest
43 ...
44 RC:ci_vmread:::
45 RC:ci_vmwrite:::
46 ...

rguest.manifest
47 ...
48 TY:ug:::
49 ...
50 RD:INCL:0xffff:0xffff::
51 ...

Fig. 14: Partial üobject manifest listings for üXMHF implementation
showing salient manifest element definitions.

19

APPENDIX C
ÜSPARK INVARIANTS, MODELS, SEMANTICS AND

PROOFS

üSpark reasoning relies foundationally on a set of
invariants – properties that must hold throughout the
execution of a üSpark hypervisor. The invariants are di-
vided into üSpark system invariants (Figure 15) and üS-
park general programming invariants (those that pertain
specifically to üSpark üobject C and CASM functions;
Figure 16). Each invariant is proved by reducing it fur-
ther to a set of proof-assumptions on hardware (PAHs)
and proof-obligations on code (POCs) using the üSpark
blueprint (üBP; §4–Figure 2). POCs are then discharged
on all üSpark verified üobjects including the prime and
sentinel using specific verification tools and techniques
(§7). A hypervisor implementation is compliant with
üSpark– and therefore amenable to compositional rea-
soning – if it satisfies all the üSpark invariants. Full
details of invariant-to-PAH/POC mappings, a one-time
effort, can be found in Appendix D. We proceed by first
describing a formal model of the üSpark architecture
followed by detailed semantics, verification approach
and associated theorem proofs. Throughout, we make
assumptions that follow from the üSpark invariants, and
make this relationship explicit by stating invariants in
square braces right after the assumptions they imply.

üSpark Architecture Model: Figure 17 shows a
formal model of the üSpark architecture. At the highest
level the system (Sys) is composed of system entities,
resource states and system interfaces. System entities
include a set of programs (p) üobjects on system CPUs
executing concurrently with devices (d) üobjects. There
are verified and unverified hypervisor and guest program
üobjects with prime and sentinel being two special ver-
ified hypervisor üobjects responsible for system startup
and üobject interactions (§4). Every program üobject has
the following non-overlapping or disjoint (�) memory
sections: (a) code for üobject code; (b) data for üob-
ject data; (c) dmadata for performing DMA to/from
üobject and devices; (d) mmio for accessing device
interfaces via memory-mapped I/O; and (e) sysmemro
and sysmemrw for read-only and read-write system
memory such as BIOS and free memory regions. In
addition, every unverified üobject has its own stack
section while all verified üobjects operate on a single
stack section contained within the prime üobject.

System resource state comprises: (a) üobject writable
states (data and sysmemrw) for all üobjects; (b) CPU
state (program and system control states) for all CPUs;
and (c) device state (device internal data and MMIO
interface via sysmemrw)

System interfaces dictate interfaces via which üobjects
and system devices can access system resources and are
enforced via a combination of hardware (hw) and light-

Inv1ü üSpark begins execution with the entry point of a
distinguished initial “prime” üobject sI in single-
core mode with just core 1 activated

Inv2ü A special “asynchronous” function startcores(s)
activates all cores i > 1 and begins executing a des-
ignated üobject s immediately thereafter; all cores
remain active thereafter for the system lifetime.

Inv3ü Asynchronous control transfers (hardware in-
terrupts, exceptions and intercepts) respect the
blueprint state execution threading and transitions

Inv4ü üObject memory regions are unity-mapped and non-
overlapping

Inv5ü üObject s accesses only its own memory
Inv6ü üObject code, data and stack regions are DMA

protected
Inv7ü üObject code is write-protected
Inv8ü Inter-üobject synchronous control-flow respect

blueprint transitions
Inv9ü Each core has its own stack at all times and stays

within the stack limits.
Inv10ü Blueprint state has state appropriate execution

threading (multi-core or single-core)
Inv11ü Locks behave like “memory fences”; any write

preceding a call to unlock is observed by any read
following the next call to lock

Fig. 15: üSpark System Invariants

Inv1üprog CASM functions preserve caller registers
Inv2üprog CASM functions establish local stack frame non-

overlapping with incoming caller stack frame
Inv3üprog CASM functions have conditional and uncondi-

tional branches local to the function
Inv4üprog CASM functions establish callee incoming stack

frame for calls to other C or CASM functions
Inv5üprog CASM functions tear down local stack frame before

returning
Inv6üprog CASM functions end with return instruction
Inv7üprog No function pointers in C functions
Inv8üprog C and CASM functions do not write to caller stack

frame params and return-address
Inv9üprog CASM functions can only encode instructions

within the domain of CASM instruction set
Inv10üprog CASM non-local control transfer instructions can

only be to fixed function entry points
Fig. 16: üSpark Programming Invariants

weight static analysis (sw-verif). Verified üobjects can
access its own üobject state and allowable CPU state via
CPU instructions and can access other üobject states via
the sentinel – all enforced via sw-verif based on the
üobject use manifest. Unverified üobjects are confined
to their üobject state and directly modifiable CPU state
via commodity hardware support for deprivileging. Un-
verified üobjects can further access verified üobject state
only via the sentinel, a capability enforced using a com-
bination of hw and sw-verif . Finally, system devices
are confined to accessing only üobject dmadata regions
leveraging the DMA controller hw (e.g., IOMMU).

CASM: An “Assembly function” is a CompCert-

20

System Entities
System Sys := (Programs,Devices, CPUs)
Programs p := Objects
Devices d := Objects
Objects := (V erified-primeobject, V erified-sentinelobject, V erified-programobjects,

Unverified-programobjects)
V erified-primeobject prime := (code � data � stack[mcpus][msize] �mmio � dmadata � sysmemrw

�sysmemro)
V erified-sentinelobject sentinel := (code � data � prime.stack � Spu.stack � sysmemro)
V erified-programobjects Spv := (code � data �mmio � dmadata � sysmemrw � sysmemro)

Sv := {prime} ∪ {sentinel} ∪ Spv

Unverified-programobjects Spu := (code � data � stack[mcpus][msize] �mmio � dmadata � sysmemrw
�sysmemro)

System Resource States
Object-state Si

st := (pi.data � pi.sysmemrw)
CPU -state Cj

st := (CPU -programstatej , CPU -systemcontrolstatej)

Device-state Dk
st := (dk.data � dk.sysmemrw)

System Interfaces
(sw-verif) pi ∈ Sv � (CPUj , CPU -instructions) � Si

st

(sw-verif) pi ∈ Sv � (CPUj , CPU -instructions) � Cj
st

(sw-verif) pi ∈ Sv � (CPUj , CPU -instructions) � sentinel � Si
st ∈ (Sv ∪ Spu)

(sw-verif) pi ∈ Sv � (CPUj , CPU -instructions) (� pi.mmio) � Dk
st

(hw) pi ∈ Spu � (CPUj , CPU -instructions) � Si
st

(hw) pi ∈ Spu � (CPUj , CPU -instructions) � CPU -programstatej
(hw, sw-verif) pi ∈ Spu � (CPUj , CPU -instructions) � sentinel � Si

st ∈ Sv

(hw) pi ∈ Spu � (CPUj , CPU -instructions) (� psi.mmio) � Dk
st

(hw) dk � (DMA-controller) � pi.dmadata, pi ∈ (Sv ∪ Spu)

CPU -instructions := {platform specific}
DMA-controller := {platform specific}

Fig. 17: üSpark Architecture Formal Model

C99 (CC99) function whose body consists only of a
block of Assembly instructions that respect the CC99
ABI. A CASM program is a CC99 program such that
the following two conditions hold: (i) (CASM1) All
Assembly code appears only in Assembly functions; and
(ii) (CASM2) every register that is both accessed by
an Assembly function and by code generated from C
source is also required to be preserved by the C ABI. In
particular, this means that from the point of view of C
source code, an Assembly function is “pure” (i.e., side-
effect free). These assumptions are captured by invariants
shown in Figure 16, and these invariants are verified
directly on the üobject source code.

We begin by stating and proving two foundational
üSpark theorems essential for the correctness of our
approach which follow directly from the üSpark pro-
gramming invariants (Figure 16).

Theorem 1 (DISJOINTCASM). The union of üobject
CASM and C functions preserve the existing semantic
preservation property of the certified compiler.

Proof. CompCert semantic preservation property: If S
has well defined semantics (does not go wrong) then S

and C are observationally equivalent; S is source, C is
compiled binary.

We need to show every CASM function call has
CompCert Mach (last step before Assembly code gen-
eration) semantics. This in turn would imply preserving
CompCert’s semantic preservation proofs.

What we need to show about every CASM function:
• Caller registers preserved [Inv1üprog]
• Establish local stack frame non-overlapping with

incoming stack frame [Inv2üprog]
• Conditional and unconditional branches local to the

function [Inv3üprog]
• Call to function establishes callee incoming stack

frame [Inv4üprog]
• Tear down local stack frame [Inv5üprog]
• End with return [Inv6üprog]

�

Theorem 2 (EXITSENTINEL). üobject execution can
only exit via the sentinel.

Proof. CompCert, by default does not allow inline As-
sembly within C functions and only generates the fol-
lowing types of synchronous control transfer instructions

21

for üobject C functions: (a) call; (b) ret; and (c) indirect
branch. Precluding function pointers in C functions re-
moves (c) [Inv7üprog]. Ensuring C and CASM functions do
not write to caller stack frame params and return address
ensures (a) and (b) are strongly paired [Inv8üprog]. Finally,
every CASM function can only perform indirect control
transfers to a fixed üobject entry point (the sentinel)
[Inv9üprog,Inv10üprog]. By all the above arguments, a üobject
execution can can only exit via the sentinel.

�

Next we formally define üSpark semantics.
Runtime The üSpark runtime system consists of

non-overlapping unity-mapped üobject memory regions
[Inv4ü], read-only üobject code regions [Inv7ü], and de-
vices confined to perform DMA only to designated
üobject DMA memory region [Inv6ü]. We write X =
x1�. . .�xn to mean that X is partitioned into x1, . . . , xn.

üObject: A üobject is a triple (p, f, e) where p is a
CASM program, f is a function in p denoting the entry
point of the üobject, and e is a set of calls to functions
not in p denoting exit points of the üobject. Given a
üobject s = (p, f, e), we write p(s), f(s), and e(s) to
mean p, f and e, respectively. üSpark code is partitioned
into a finite set of üobjects üobjects = {s1, . . . , sk}.
This means that every function in üSpark belongs to
one, and only one, üobject. This partitioning induces
a transition relation δ over üobjects in a natural way:
(s, s′) ∈ δ ⇐⇒ f(s′) ∈ e(s) i.e., δ(s, s′) means that
s invokes s′. The reflexive and transitive closure of δ
is denoted δ∗. Thus, (s, s′) ∈ δ∗ if either s′ = s, or s
invokes s′ directly or indirectly.

Core Bringup: üSpark begins execution with the
entry point of a distinguished initial “prime” üobject
sI with just core 1 activated [Inv1ü]. Subsequently, core
1 executes instructions to activate other cores. A spe-
cial “asynchronous” function startcores(s) activates all
cores i > 1 that begin executing üobject s immediately
and remain active thereafter for the system lifetime
[Inv2ü].

Locking: üSpark uses a set of locks L, and functions
lck(l) and ulk(l) to acquire and release a lock l ∈ L.
Locks also behave like “memory fences”, i.e., any write
preceding a call to ulk(l) is observed by any read
following the next call to lck(l) [Inv11ü].

Sequential and Concurrent üObjects: Our goal is
to allow üSpark to use the maximum amount of concur-
rency possible, while enabling tractable analysis. To this
end, the set of üobjects is partitioned into two subsets
– sequential and concurrent: üobjects = üobjectss �
üobjectsc. When a sequential üobject s ∈ üobjectss exe-
cutes on core i, no other core can execute s. In essence, s
is a monitor. Each sequential üobject is either executed
only in single-core mode, other üobjects are executed

only after acquiring a lock [Inv10ü]. In contrast, multiple
cores can execute a concurrent üobject s ∈ üobjectsc
simultaneously.

Core Signal Handling: Core asynchronous signals
(e.g., exceptions, intercepts) respect function call seman-
tics [Inv3ü]. In other words, when triggered, signals either
transfer control back to the point where the original
üobject was interrupted or to the entry point of a new
üobject (one-way function call).

Memory: System memory is partitioned into one
stack per core, and a non-stack area. The non-stack area
is further partitioned into one non-stack area per üobject.
Thus: M = stk1 � . . .� stkn � data(s1)� . . .�data(sk),
where stki is the stack area for core i, data(s) is the
non-stack area for üobject s. Note that this non-stack
area is further partitioned into a data area, a code area,
a DMA area, and a system area. The memory addresses
of each partition are fixed once instantiated and remain
unchanged throughout the execution of üSpark [Inv4ü].
In general, üobject s executing on core i accesses only
mem(i, s) = stki ∪ data(s) [Inv5ü]. We assume that the
DMA area is modifiable arbitrarily by devices and there-
fore all reads to this memory return non-deterministic
values.

Core State: A state of core i on üobject s is a pair
(m, r) where m is the state of mem(i, s) and r is the
state of the core’s registers such that the value of pc lies
in the üobject’s code area. We use the terms “core state”
and “state” interchangeably. Given a state σ = (m, r) we
write m(σ) and r(σ) to denote m and r, respectively.
We also write stk(σ) and nstk(σ) to denote the stack
and non-stack components of σ.

Core State Equivalence: Two states σ and σ′ of core
c (on same or different üobjects) are core-equivalent,
denoted σ ≈c σ

′, if they agree on stack and registers,
i.e., σ ≈c σ

′ ⇐⇒ stk(σ) = stk(σ′) ∧ r(σ) = r(σ′).
Two states σ and σ′ (of identical or different cores) on
üobject s are üobject-equivalent, denoted σ ≈s σ′, if
they agree on the non-stack memory, i.e., σ ≈s σ

′ ⇐⇒
nstk(σ) = nstk(σ′), if we ignore the DMA area of s.

Core Transition Relation: Given a state σ of core c
on üobject s, we write core(σ) and object(σ) to denote
c and s. Given two states σ, σ′ of core c (on identical
or different üobjects), we write σ c−→ σ′ to mean that
executing instruction at pc(σ) on c from state σ, and
allowing the DMA area of object(σ) to be changed
arbitrarily, results in the state being updated to σ′. Given
function g, we write entry(g), exit(g), call(g) and
ret(g) to denote, respectively the first instruction of g, an
instruction that returns from g, an instruction that calls
g, and an instruction immediately following a call to g.

üObject Semantics: An execution of a üobject s =
(p, f, e) on core c is a sequence of states (σ1, . . . , σk) of
c on s that: (i) ends with a call to an exit point function

22

g ∈ e or the return statement of f ; and (ii) for i ∈ [1, k),
state σi+1 is obtained by executing instruction at pc(σi)
after allowing possible changes to the memory by other
cores and devices. More formally, the following hold:

1) pc(σk) = exit(f) ∨ ∃g ∈ e � pc(σk) = call(g).
2) ∀i ∈ [1, k)�

• object(σi) ∈ üobjectss =⇒ σi
c−→ σi+1

• object(σi) ∈ üobjectsc =⇒ ∃σ�σ ≈c σi∧σ
c−→

σi+1

The semantics of üobject s on core c, denoted [[s, c]],
is the set of all its executions. Note that for concurrent
üobjects, we allow the non-stack area to be modified
arbitrarily (by instructions running on other cores). Also,
the DMA area can be modified arbitrarily in each execu-
tion step. The stack and registers remain unchanged since
each core has its own disjoint stack region in memory.
Given a üobject execution Σ = (σ1, σ2, . . . , σk) ∈ [[s, i]]
we write fst(Σ), lst(Σ), object(Σ) and core(Σ) to
mean σ1, σk, s and Ci, respectively. Note that the stack-
pointer register of core i always lies within the limits of
its stack stki [Inv9ü].

üSpark Semantics: An execution of üSpark is ob-
tained by interleaving executions of üobjects on cores
while taking into account appropriate changes to the
memory and registers. In particular, consider a sequence
of üobject executions π = Σ1,Σ2, . . . ,Σm. For each
index j ∈ [1,m], the most recent üobject at j, denoted
mrs(π, j) is the largest index k ∈ [1, j) such that
object(Σk) = object(Σj) and ⊥ if no such index exists.
Similarly, the most recent core at j, denoted mrc(π, j)
is the largest index k ∈ [1, j) such that core(Σk) =
core(Σj) and ⊥ if no such index exists. Formally, an
execution of üSpark is a sequence of üobject executions
π = Σ1,Σ2, . . . ,Σm such that if ∀j ∈ [1,m],

Σj ∈ [[sj , Cj]] ∧ σj = fst(Σj) ∧ σ′j = lst(Σj)

then the following hold:
1) The non-stack memory at the beginning on each

execution is identical to the non-stack memory at
the end of the last execution of the same üobject:

∀j ∈ [1,m] �mrs(π, j) = k =⇒ σ′k ≈sj σj

2) The stack and registers at the beginning of each
execution result from executing the last instruction
of the last execution of the same core:

∀j ∈ [1,m] �mrc(π, j) = k =⇒
∃σ � σ′k

ck−→ σ ∧ σ ≈sj σj

Properly Nested üObject Execution: Recall the
relation δ∗ and define δ∗(s) = {s′ | (s, s′) ∈ δ∗}. A
properly nested execution of üobject s on core c is a
sequence of üobject executions π = Σ1, . . . ,Σm on c
such that:

1) The sequence begins with an execution of f(s), i.e.,
σ1 = entry(f(s)).

2) Each Σj is an execution of s or some üobject s′

invoked directly or indirectly by s on core c, i.e.,

∀j ∈ [1,m] � core(Σj) = c ∧ object(Σj) ∈ δ∗(s)

3) If σ′j = exit(g), and the most recent execution
entering a üobject is Σk such that σk = entry(g′)
then g′ = g. This means “calls to” and “returns
from” üobjects are properly nested.

4) If σ′j = call(g) then σj+1 = entry(g), and if σ′j =
exit(g) then σj+1 = ret(g). This means “calls to”
and “returns from” üobjects behave like procedures.

Theorem 3 (NESTEDCALL). Consider any legal exe-
cution π = Σ1,Σ2, . . . of üSpark and any sequential
üobject s. Then the projection of π on executions of δ∗(s)
consists of a sequence of properly nested executions of
s, each on a specific core.

Proof. The proof follows from the fact that sequential
üobjects are always invoked either in single-core mode
or while holding a lock [Inv10ü];, and by showing that a
üobject execution can never modify the return address
stored on the stack.

We prove that the return address is never modified as
described below. We partition sequential üobjects into
two groups – “verified” and “unverified”.

For verified üobjects, we have compile-time control
flow integrity by Theorem 2. Therefore, the return-
address is never modified by any intra-üobject control
flow. Further, by Theorem 2 inter-üobject control flow
from a verified üobject can only occur via the üS-
park sentinel. The üSpark sentinel preserves the return-
address on the stack-frame to ensure there is inter-
üobject control flow integrity [Inv8ü].

Upon a control transfer to an unverified üobject, the
üSpark sentinel ensures that prior to the control transfer
the verified üobject stack frame is saved and control
is transfered to the unverified üobject in hardware-
enforced deprivileged mode on the unverified üobject
stack [Inv8ü]. Subsequently, an unverified üobject can
perform a hardware-enforced inter-üobject control flow
transition only via the üSpark sentinel. The üSpark
sentinel maintains a shadow-stack for all verified to
unverified transitions and ensures that the appropriate
verified stack frame and verified üobject return-addresses
are restored upon a return [Inv8ü].

�

Hardware Model and Converting Assembly to
C: Recall that Assembly instructions in üSpark appear
only in bodies of Assembly functions. In addition to
general purpose registers (which are preserved to respect
the CC99 ABI) these Assembly instructions access a

23

special set of hardware registers which are necessary to
interact with devices (e.g., LAPIC). Let us denote the set
of register accessed by Assembly functions in üSpark
by Rhw . In order to verify üSpark using source code
analysis tools, we:

1) introduce a set of fresh C variables Vhw =
{vr | r ∈ Rhw}

2) replace each Assembly instruction accessing Rhw

by one or more CC99 statements that operate in a
semantically equivalent way over Vhw .

3) replace each r ∈ Vhw with vr in assertions used for
specifying pre-and-post conditions during verifica-
tion.

We refer to the mapping between Rhw and Vhw , and the
induced mapping from Assembly instructions to CC99
statements, as our “hardware model”. We assume that
this mapping is correct. We refer to the CC99 function
obtained by transforming an Assembly function f in this
manner as f̃ .

üSpark Blueprint: To analyze üSpark, we abstract
it further as an non-deterministic CC99 (NDCC99) pro-
gram, which is a CC99 program that also allows non-
deterministic selection of values from finite sets. In
particular, our abstract üSpark üBP consists of a set
of abstract üobjects, where each abstract üobject s̃ is
obtained from the corresponding concrete üobject s by
converting each function g ∈ p(s) to an abstract function
g̃ as follows:

1) Each read to DMA memory is replaced by a read
that returns a non-deterministic value;

2) If g is the entry function of untrusted guest üob-
ject, then g̃ sets all global variables of s to non-
deterministic values and then calls the entry func-
tion of the intercept handler üobject; otherwise

3) If g belongs to a concurrent üobject, then g̃ is
obtained from g by replacing each read of a global
variable (i.e., data area access) with the read of a
non-deterministic value; otherwise

4) If g is an Assembly function then g̃ is constructed
using the hardware model as described earlier;
otherwise

5) g̃ = g.

Note that Steps 1 and 2 above cause üBP to be non-
deterministic. In particular, Step 1 over-approximates the
behavior of a guest by a completely non-deterministic
program that interacts with the remaining üobjects by
causing intercepts. Step 2 models interference between
cores when a concurrent üobject is executing as required
by our üobject semantics. Finally, note that üBP is a
complete program with no external dependencies.

Equivalence between States of üSpark and üBP:
While a state of üSpark consists of the contents of
memory and registers, a state of üBP is an assignment of

variables to values. However there is a natural mapping
between the two – a variable from the source code maps
to the memory location it is allocated by the compiler,
while a variable vr introduced by the hardware model
maps to the corresponding register r. We say a s state of
üSpark is equivalent to a state s̃ of üBP, denoted s ≡ s̃, if
they are identical modulo this mapping. It can be shown
that each üSpark state s is equivalent to a unique üBP
state s̃, and an assertion ϕ holds on s iff it holds on s̃.

Semantics of üBP: The semantics of üBP follows
directly from that of NDCC99. Specifically, an execution
of any function g̃ ∈ üBP is a sequence of states τ̃ such
that if we begin executing g̃ from state fst(τ̃) then g̃
returns with state lst(τ̃) following the CC99 semantics,
and allowing for non-deterministic choice. The semantics
of g̃, denoted [[g̃]], is the set of all its executions.

We now show that üBP abstracts üSpark in a sound
way. At a high-level, this is only correct if the CASM
functions are effect free for the C functions. Imagine an
inline Assembly code in a C functions that either changes
the general register, or control register that points to the
correct page table, then after executing the Assembly
code, then the state of the C function will be altered after
executing the Assembly code. To achieve effect free, first
we place all Assembly code in CASM funtion, so no
general registers are clobbered, then verify the Assembly
code to make sure that other important control registers
are not modified and that all control transfers satisfy the
invariant.

The following theorem shows that each function g
in a sequential üobject refines its abstract version g̃ in
that for each properly nested execution of g, there is a
corresponding execution of g̃.

Theorem 4 (EXECREFINE). If g is a function belonging
to a sequential üobject s.t. all Assembly code in g is in a
CASM function satisfying all the Invüprog properties, and
c is any core, then for each properly nested execution τ
of g on c there is a corresponding execution τ̃ ∈ [[g̃]] such
that: τ ≡ τ̃ , where τ ≡ τ̃ lifts the per-state equivalence
to the trace.

Proof. The proof follows from:
1) The definition of properly nested üobject executions

where entry into and exit from üobjects are equiva-
lent semantically to function calls and returns, and

2) Our construction of g̃ from g: it was either left
unchanged, replaced by a more non-deterministic
version, or (in the case of Assembly functions)
replaced by version that operates equivalently over
Vhw instead of Rhw .

In particular, our transformation of Assembly function
g to g̃ is sound because: (i) by definition g respects
the CC99 ABI so its operations over general purpose
registers are not visible outside the scope of g; and (ii)

24

non-general purpose registers in Rhw are only accessed
by Assembly functions and never by code compiled from
regular C statements in üSpark (we ensure this via static
analysis). �

Theorem 5 (INVCOMPOSE). Given any sequential üob-
ject s, let s̃ be the üBP abstraction of s. If an invariant
property ϕ holds on every execution of g̃(s), then ϕ is
an invariant property of every execution of s.

Proof. First, by Theorem 3 we know that any üSpark
execution when projected on δ∗(s) consists of a sequence
of properly nested executions of s. Next the proof
follows by induction on the length of this sequence. The
base case is establish by that the precondition ϕ holds
on the first state. The inductive step is proved via ϕ is
an invariant and Theorem 4 since they imply that every
transition step of g(s) on any core preserves ϕ. �

25

APPENDIX D
DISCHARGING ÜSPARK INVARIANTS AS PROOF

ASSUMPTIONS ON HARDWARE AND PROOF
OBLIGATIONS ON CODE

Figure 18 shows the x86 hardware-virtualized archi-
tecture specialization of the üSpark architecture model
previously described in Appendix C–Figure 17. Fig-
ure 19 shows the corresponding Proof Assumptions on
Hardware (PAH) we developed for üSpark.

We now describe how we discharge the üSpark general
programming (Figure 16) and system invariants (Fig-
ure 15) as a combination of PAHs and Proof Obligations
on Code (POC) on the prime, sentinel and verified
üobjects in general.

üSpark general programming invariants (Figure 16)
Inv1üprog, Inv2üprog, Inv3üprog, Inv4üprog, Inv5üprog, Inv6üprog,
Inv7üprog, Inv8üprog, Inv9üprog, and Inv10üprog are directly dis-
charged via static analysis on each verified üobject
source-code.

üSpark system invariants Inv1ü is discharged by
PAH-1(rt); Inv2ü is discharged via POC-36 on the veri-
fied prime üobject source-code; and Inv11ü is discharged
by PAH-7(gp).

üSpark system invariants Inv3ü , Inv4ü , Inv5ü , Inv6ü , Inv7ü ,
Inv8ü , Inv9ü , and Inv10ü are discharged via a set of PAHs
and POCs on the prime, sentinel and all verified üobject
source-code. We first list the cumulative PAHs and
POCs for each of the aforementioned üSpark invariants.
We describe the methodology we use to extract the
cumulative PAHs and POCs right after.
Inv3ü : hardware (PAH-1(rt); PAH-4(gp),

PAH-5(gp) PAH-17(ex) PAH-2(smp), PAH-18(ex),
PAH-15(dpg), PAH-16(dpg), PAH-12(dpg),
PAH-14(dpg), PAH-15(dpg), PAH-13(dpg)

PAH-19(ex), PAH-18(ex),); prime (POC-11,
POC-23, POC-24, POC-34,); sentinel (POC-37,
POC-38, POC-41 POC-39,); verified üobjects (POC-7,
POC-9, POC-10, POC-44,);

Inv4ü : hardware (PAH-1(rt), PAH-6(gp)

PAH-8(dp), PAH-9(dp), PAH-10(dp), PAH-11(dp)

PAH-12(dpg), PAH-14(dpg), PAH-16(dpg)

PAH-15(dpg), PAH-13(dpg)); prime (POC-6

POC-22, POC-27, POC-28, POC-29, POC-30,);
sentinel (POC-39, POC-40, POC-45 POC-39, POC-41,
POC-42); verified üobjects (POC-15, POC-16, POC-17,
POC-13, POC-14);
Inv5ü : hardware (PAH-1(rt), PAH-6(gp)

PAH-6(gp), PAH-12(dpg),); prime (POC-6, POC-22,
POC-27, POC-28, POC-29, POC-21); sentinel(POC-47
); verified üobjects (POC-5, POC-15, POC-16, POC-17,
POC-13, POC-14 POC-5,);
Inv6ü : hardware (PAH-1(rt) PAH-21(dma);

PAH-12(dpg), PAH-16(dpg),); prime (POC-35,);
sentinel (); verified üobjects (POC-19);

Inv7ü : hardware (PAH-1(rt), PAH-6(gp)

PAH-2(smp), PAH-12(dpg), PAH-8(dp), PAH-9(dp),
PAH-10(dp), PAH-11(dp) PAH-12(dpg),
PAH-14(dpg), PAH-16(dpg) PAH-15(dpg),
PAH-13(dpg)); prime (POC-22, POC-28, POC-29,
POC-27, POC-30,); sentinel (POC-39, POC-40,
POC-45 POC-41, POC-42); verified üobjects (POC-15,
POC-16, POC-17, POC-13, POC-14);
Inv8ü : hardware (PAH-1(rt), PAH-17(ex)

PAH-18(ex), PAH-15(dpg), PAH-13(dpg),);
prime (); sentinel (POC-46); verified üobjects (Inv7ü ,
Inv8ü , Inv9ü , Inv10ü , POC-9, POC-10, POC-18);
Inv9ü : hardware (PAH-2(smp), PAH-6(gp),

PAH-8(dp), PAH-9(dp), PAH-10(dp), PAH-11(dp)

PAH-12(dpg), PAH-14(dpg), PAH-16(dpg)

PAH-15(dpg), PAH-13(dpg)); prime (POC-22,
POC-28, POC-29, POC-27, POC-30,); sentinel (
POC-46, POC-39, POC-40, POC-45, POC-47, POC-43
); verified üobjects (POC-1, POC-2, POC-11, POC-12
POC-15, POC-16, POC-17, POC-13, POC-14);
Inv10ü : hardware (PAH-1(rt), PAH-2(smp),

PAH-12(dpg), PAH-16(dpg), PAH-15(dpg),); prime
(POC-36); sentinel (); verified üobjects (POC-20,
POC-21);

üSpark invariants Inv3ü , Inv4ü , Inv5ü , Inv6ü , Inv7ü , Inv8ü ,
Inv9ü , and Inv10ü described previously are discharged on
each state in the üSpark blueprint (§4–Figure 2) using a
combination of PAHs (Figure 19) and POCs (Figure 20,
Figure 21, and Figure 22). For each state in the blueprint,
we first enumerate all categories of üobjects involved
in that state (prime, sentinel, verified and unverified
hypervisor program üobjects). Finally, for each üobject
category we enumerate the POCs and PAHs that need to
be satisfied for each of the invariants to hold. Finally, for
each invariant we accumulate the PAHs and POCs for
each state. The following are the list of states and the
corresponding POCs and PAHs for the aforementioned
üSpark invariants.
• State-1:
Inv3ü via PAH-1(rt); POC-7, POC-44, PAH-4(gp),
PAH-5(gp) PAH-17(ex) ;
Inv4ü via PAH-1(rt), POC-6 POC-22, PAH-6(gp);
;
Inv5ü via PAH-1(rt), POC-6, POC-22, POC-5,
PAH-6(gp) ;
Inv6ü via PAH-1(rt) ;
Inv7ü via PAH-1(rt), POC-22, PAH-6(gp) ;
Inv8ü via Inv7ü , Inv8ü , Inv9ü , Inv10ü , POC-18,
PAH-1(rt), PAH-17(ex) ;
Inv9ü via POC-22, PAH-6(gp) ;
Inv10ü via PAH-1(rt), POC-20, POC-21

• State-2:
Inv3ü via POC-7, POC-11, POC-44, POC-23,
POC-24, POC-34, PAH-18(ex), PAH-4(gp),

26

CPU -programstate := (hwcore-varstackptr,
others)

CPU -systemcontrolstate := (hwcore-varinterrupts(true, false),
hwcore-varexcptblptr,
hwcore-vardpexcpstackptr,
hwcore-varpaging(true, false),
hwcore-varmempgtblptr,
hwcore-varsmpactivate(true, false),
hwcore-varmode(host, guest),
hwcore-varprivilege(supervisor, user),
hwcore-varsyscallesp,
hwcore-varsyscallep,
hwcore-varsysexitesp,
hwcore-varsysexitep,
hwcore-varguestmempgtblptr,
hwcore-varguesthostep,
hwcore-varguesthostmempgtblptr,
hwcore-varguesthostesp,
hwcore-varguesthostpl,
hwcore-varid,
others)

DMA-controller := (hwdma-varpgtblbase,
hwdma-varenableprot,
others)

CPU -instructions := (hwcore-insnrt,
hwcore-insnswitchguest,
hwcore-insnsyscall,
hwcore-insnsysret,
hwcore-insniret,
others)

Fig. 18: üSpark Architecture Model: x86 hardware-virtualization specialization

PAH-5(gp);
Inv4ü via POC-27, POC-28, POC-29, PAH-6(gp);
Inv5ü via POC-6, PAH-6(gp), POC-27, POC-28,
POC-29, POC-5 ;
Inv6ü via POC-35, PAH-21(dma);
Inv7ü via POC-28, POC-29, POC-27, PAH-6(gp);
Inv8ü via Inv7ü , Inv8ü , Inv9ü , Inv10ü , POC-18,
PAH-18(ex), ;
Inv9ü via POC-28, POC-29, POC-27, PAH-6(gp) ;
Inv10ü via POC-21, POC-36

• State-2a: Verified hypervisor program üobjects in-
variants POCs/PAHs; and Unverified (trusted) hy-
pervisor program üobjects invariants POCs/PAHs

• State-3:
Inv3ü via PAH-2(smp), PAH-4(gp), PAH-5(gp),
PAH-17(ex), PAH-18(ex), POC-7, POC-44,
POC-24, POC-9, ;
Inv4ü via POC-6, PAH-6(gp), POC-30, POC-15,
POC-16, POC-17 ;
Inv5ü via POC-6, PAH-6(gp), POC-15, POC-16,
POC-17 POC-5 ;
Inv6ü via PAH-21(dma), POC-19 ;
Inv7ü via PAH-2(smp), PAH-6(gp), POC-30,
POC-15, POC-16, POC-17 ;
Inv8ü via Inv7ü , Inv8ü , Inv9ü , Inv10ü , POC-18,

PAH-18(ex), ;
Inv9ü via PAH-2(smp), PAH-6(gp), POC-1, POC-2,
POC-30, POC-15, POC-16, POC-17 ;
Inv10ü via PAH-2(smp), POC-20, POC-21

• State-4: Verified hypervisor program üobjects
(multi-core) invariants POCs/PAHs and Inv10ü ad-
ditionally via POC-21

• State-4a: Verified hypervisor program üobjects in-
variants POCs/PAHs

• State-4b: Verified hypervisor program üobjects in-
variants POCs/PAHs; and Unverified (trusted) hy-
pervisor program üobjects invariants POCs/PAHs

• State-5: Verified hypervisor program üobjects
(multi-core) invariants POCs/PAHs and Inv10ü ad-
ditionally via POC-21

• State-5a: Verified hypervisor program üobjects in-
variants POCs/PAHs

• State-5b: Verified hypervisor program üobjects in-
variants POCs/PAHs; and Unverified (trusted) hy-
pervisor program üobjects invariants POCs/PAHs

• State-5c: Verified hypervisor program üobjects in-
variants POCs/PAHs; and Unverified (trusted) hy-
pervisor program üobjects invariants POCs/PAHs

• State-6:
Inv3ü via PAH-15(dpg), PAH-16(dpg), ;

27

PAH-1(rt) := if hwcore-insnrt, all AP cores are halted; hwcore-varsmpactivate = false; BSP
core hwcore-varmode != guest; BSP core hwcore-varprivilege = supervisor;
BSP core hwcore-varexcptblptr = clear; BSP core hwcore-varinterrupts =
false; system setup to restart on any hardware exception triggered by BSP core;
hwdma-varenableprot = true; all verified and unverified üobject memory regions are
DMA protected

PAH-2(smp) := AP awakening results in AP core hwcore-varmode != guest; AP core
hwcore-varexcptblptr = clear; AP core hwcore-varinterrupts = false;
system setup to restart on any hardware exception generated by AP core

PAH-3(smp) := h/w provides unique core id for every core in the system
PAH-4(gp) := if hwcore-varmode != guest no intercepts are triggered
PAH-5(gp) := if hwcore-varinterrupts == false, no interrupts are triggered
PAH-6(gp) := if hwcore-varpaging == true, enforce memory protections as per memory page tables

pointed to be hwcore-varmempgtblptr

PAH-7(gp) := LOCK instruction prefix function as memory-fences.
PAH-8(dp) := if hwcore-varprivilege == user, hardware prevents access to

CPU -systemcontrolstate
PAH-9(dp) := if hwcore-varprivilege == user, hardware prevents access to memory regions marked

supervisor in memory page tables pointed to by hwcore-varmempgtblptr

PAH-10(dp) := if hwcore-varprivilege == user and hwcore-insnsysexit hardware transfers con-
trol to the location contained in hwcore-varsysexitep with hwcore-varprivilege

= user; set hwcore-varstackptr = hwcore-varsysexitesp

PAH-11(dp) := if hwcore-insnsyscall, hardware transfers control the location contained
in hwcore-varsyscallep with hwcore-varprivilege = supervisor; it sets
hwcore-varstackptr = hwcore-varsyscallesp

PAH-12(dpg) := if hwcore-varmode == guest, enforce memory protections as per memory page tables
pointed to by hwcore-varguestmempgtblptr

PAH-13(dpg) := if hwcore-varmode == guest, on intercept hwcore-varmode

= host; hwcore-varprivilege = hwcore-varguesthostpl;
hwcore-varmempgtblptr = hwcore-varguesthostmempgtblptr; and
transfer control to hwcore-varguesthostep with hwcore-varstackptr =
hwcore-varguesthostesp

PAH-14(dpg) := if hwcore-insnswitchguest, hardware switches to guest mode and sets
hwcore-varmode = guest

PAH-15(dpg) := Hardware leaves guest mode only on an intercept
PAH-16(dpg) := if hwcore-varmode == guest, prevents access to CPU -systemcontrolstate
PAH-17(ex) := If hwcore-varexcptblptr is clear restart system on any core exceptions
PAH-18(ex) := On exception, if hwcore-varmode != guest and hwcore-varexcptblptr is not clear

and hwcore-varprivilege == supervisor, perform control transfer to location within
the exception table pointed to by hwcore-varexcptblptr; setup stack frame with
return-address and flags prior to control transfer.

PAH-19(ex) := On exception, if hwcore-varmode != guest and hwcore-varexcptblptr

is not clear and hwcore-varprivilege == user, hwcore-varstackptr =
hwcore-vardpexcpstackptr and transfer control to location within exception
table pointed to by hwcore-varexcptblptr; ;setup stack frame with return-address
and flags prior to control transfer.

PAH-20(ex) := if hwcore-insniret and hwcore-varmode != guest and hwcore-varexcptblptr is
not clear, restore flags from stack frame and transfer control to location within stack
frame; if stack frame code selector is deprivileged, then hwcore-varprivilege ==
user

PAH-21(dma) := if hwdma-varenableprot == true and hwdma-varpgtblbase is not clear, en-
force DMA protection for devices as per device page tables pointed to by
hwdma-varpgtblbase

Fig. 19: üSpark Proof Assumptions on Hardware (PAH): rt = root of trust, smp = multi-core, gp = general-purpose, dp = deprivileged-mode,
dpg = deprivileged guest-mode, and ex = exception handling.

28

POC-1 := CASM functions always have a constant upper bound for local stack frame size consistent
with underflow/overflow guards

POC-2 := C functions always have a constant upper bound for local stack frame size consistent
with underflow/overflow guards

POC-3 := C and CASM functions can only access caller stack parameters within bounds
POC-4 := can perform I/O only via dedicated CASM I/O functions
POC-5 := can access shared system memory and guest üobject memory regions only via dedicated

CASM sysmemaccess functions
POC-6 := verified and unverified üobject binaries are linked into a single binary such that they are

disjoint
POC-7 := hwcore-varinterrupts = false at all points
POC-8 := hwcore-varmode != guest
POC-9 := if not prime üobject, no writes to var-excptbl
POC-10 := if not prime üobject, no writes to hwcore-varexcptblptr

POC-11 := if not prime, no writes to var-dpexcpstacks
POC-12 := if not prime, no writes to hwcore-vardpexcpstackptr

POC-13 := if not prime or sentinel üobjects, no writes to hwcore-varmempgtblptr

POC-14 := if not prime üobject, no writes to hwcore-varpaging

POC-15 := if not prime üobject, no writes to verified üobject memory page-tables
POC-16 := if not prime üobject, no writes to unverified üobject memory page-tables
POC-17 := changes to unverified guest üobject page tables should be such that only üobject memory

regions and MMIO of üobject allocated devices are mapped at all times
POC-18 := üobject can only invoke another üobject via the sentinel as per the blueprint.
POC-19 := if not prime üobject, no direct writes to var-dmatable, no writes to

hwdma-varenableprot and hwdma-varpgtblbase

POC-20 := if not prime üobject, no writes to hwcore-varsmpactivate
POC-21 := if üobject is concurrent and not sentinel and invokes other üobjects that is sequential

then: uses lock mechanism, invokes üobject and releases lock mechanism. Otherwise no
locking mechanisms are used.

Fig. 20: üSpark general verified hypervisor üobjects Proof Obligations on Code (POC).

Inv4ü via PAH-12(dpg), ;
Inv5ü via PAH-12(dpg), ;
Inv6ü via PAH-21(dma) PAH-12(dpg),
PAH-16(dpg), ;
Inv7ü via PAH-12(dpg), ;
Inv8ü via PAH-15(dpg), PAH-13(dpg), ;
Inv9ü via PAH-12(dpg), ;
Inv10ü via PAH-12(dpg), PAH-16(dpg),
PAH-15(dpg),

• State-7: Verified hypervisor program üobjects
(multi-core) invariants POCs/PAHs and Inv10ü ad-
ditionally via POC-21

• State-7a: Verified hypervisor program üobjects in-
variants POCs/PAHs

• State-7b: Verified hypervisor program üobjects in-
variants POCs/PAHs; and Unverified (trusted) hy-
pervisor program üobjects invariants POCs/PAHs

• State-7c: Verified hypervisor program üobjects in-
variants POCs/PAHs; and Unverified (trusted) hy-
pervisor program üobjects invariants POCs/PAHs

• State-8: Verified hypervisor program üobjects
(multi-core) invariants POCs/PAHs and Inv10ü ad-

ditionally via POC-21

• State-8a: Verified hypervisor program üobjects in-
variants POCs/PAHs

• ./vh2vhcall and ./vh2vhret :
Inv3ü via POC-7, POC-37, POC-38, POC-44, POC-9,
POC-10; PAH-18(ex), PAH-4(gp), PAH-5(gp) ;
Inv4ü via POC-15, POC-16, POC-17, POC-14

PAH-6(gp) ;
Inv5ü via POC-15, POC-16, POC-17, POC-14 POC-5
POC-47 PAH-6(gp) ;
Inv6ü via POC-19 PAH-21(dma) ;
Inv7ü via POC-15, POC-16, POC-17, POC-14

PAH-6(gp) ;
Inv8ü via Inv7ü , Inv8ü , Inv9ü , Inv10ü , POC-18, POC-46 ;
Inv9ü via POC-11, POC-12, POC-46, PAH-6(gp) ;
Inv10ü via POC-20, POC-21,

• ./vh2uhcall and ./uh2vhret :
Inv3ü via POC-7, POC-37, POC-38, POC-44, POC-9,
POC-10; PAH-18(ex), PAH-19(ex), PAH-4(gp),
PAH-5(gp) POC-39,
;
Inv4ü via POC-15, POC-16, POC-17, POC-14

29

POC-22 := setup hwcore-varstackptr with initial stack; load hwcore-varmempgtblptr with
unity mapped pagetables that are setup with stack underflow/overflow guards and
prime üobject code write-protect and set hwcore-varpaging = true; do not write
to hwcore-varpaging thereafter; hwcore-varmempgtblptr is not written to until
verified üobject page-tables are setup and loaded. this part of code stays within existing
stack limits and does not reload any segment registers

POC-23 := populates var-excptbl table to have all exceptions transfer control to the sentinel; once
var-excptbl is populated it is not written to thereafter

POC-24 := hwcore-varexcptblptr = var-excptbl; hwcore-varexcptblptr is not written to
thereafter

POC-25 := populate hwcore-varsyscallep to point to sentinel
POC-26 := set up var-uvlegiomaps so that they only map legacy I/O ports for devices allocated to

the üobject; no writes to var-uvlegiomaps thereafter
POC-27 := sets up page tables for unverified guest üobjects such that the üobject memory regions are

marked deprivileged; verified hypervisor üobjects including prime and sentinel memory
regions and unverified hypervisor üobjects are marked not-present; there is one-to-one
mapping between virtual and physical memory; unverified guest üobject allocated device
MMIO regions are mapped present and read-write; var-uvlegiomaps for üobject is mapped
present and read-write; no writes to unverified guest üobject page tables thereafter

POC-28 := sets up page tables for each unverified üobject such that the üobject memory regions are
marked deprivileged; verified üobject, sentinel memory regions are marked supervisor;
other unverified üobjects are marked not-present; there is one-to-one mapping between
virtual and physical memory; üobject code regions are marked read-only; unverified guest
üobject, verified üobject and unverified üobject memory regions are disjoint; unverified
guest üobject and unverified üobject allocated device MMIO regions are mapped; var-
uvlegiomaps for üobject is mapped; sets up stack underflow/overflow guards for disjoint
BSP and AP var-dpexcpstacks and mark them supervisor; no writes to unverified üobject
page tables thereafter

POC-29 := load hwcore-varmempgtblptr with verified üobject page tables such that verified
üobject memory regions and sentinel are marked supervisor; unverified üobject memory
regions are marked deprivileged; there is one-to-one mapping between virtual and
physical memory; üobject code regions are marked read-only; unverified guest üobject,
verified üobject and unverified üobject memory regions are disjoint; sets up stack
underflow/overflow guards for disjoint BSP and AP var-stacks and var-dpexcpstacks and
mark them supervisor; no writes to verified üobject page tables thereafter

POC-30 := sets up hwcore-varstackptr with var-stacks[hwcore-varid]; load
hwcore-varmempgtblptr with verified üobject memory page tables and set
hwcore-varpaging = true; do not write to hwcore-varpaging thereafter;

POC-31 := loads hwcore-vardpexcpstackptr for APs with var-dpapexcpstacks[hwcore-varid
]

POC-32 := sets up hwcore-varguesthostep to point to sentinel
POC-33 := sets up hwcore-varguesthostmempgtblptr to verified üobject page table
POC-34 := loads hwcore-dpexcpstackptr for BSP with var-dpapexcpstacks[hwcore-varid for

BSP]
POC-35 := establish var-dmatable such that only üobject allocated devices can do DMA only

to üobject dmadata regions and set hwdma-varpgtblbase to var-dmatable before
activating DMA protection by setting hwdma-varenableprot to true

POC-36 := awaken application processors by setting hwcore-varsmpactivate = true; don’t touch
hwcore-varsmpactivate thereafter

Fig. 21: üSpark prime verified hypervisor üobject specific Proof Obligations on Code (POC).

30

POC-37 := transfer control to exception üobject on any exception
POC-38 := ensures no exceptions due to its own code
POC-39 := saves current hwcore-varstackptr into hwcore-varsyscallesp register and

switches to deprivileged mode via hwcore-insnsysret to transfer control to unverified
hypervisor üobject

POC-40 := loads unverified hypervisor üobject page tables into hwcore-varmempgtblptr before
handing control to unverified hypervisor üobject

POC-41 := uses hwcore-insnswitchguest to switch to guest mode only before starting an
unverified guest üobject

POC-42 := loads guest page tables into hwcore-varguestmempgtblptr before handing control to
guest üobject

POC-43 := saves hwcore-varstackptr into hwcore-varguesthostesp before transfering con-
trol to guest üobject

POC-44 := hwcore-varmode != guest except when handing control to guest üobject
POC-45 := only write to hwcore-varmempgtblptr to load correct unverified üobject page tables

prior to executing corresponding unverified üobject
POC-46 := preserve üobject-to-üobject call semantics: register preservation, callee stack frame

preservation and paired call and returns
POC-47 := do bounded parameter marshalling for dp-call and dp-ret

Fig. 22: üSpark sentinel verified hypervisor üobject specific Proof Obligations on Code (POC).

PAH-6(gp) POC-39, POC-40, POC-45

PAH-8(dp), PAH-9(dp), PAH-10(dp),
PAH-11(dp) ;
Inv5ü via POC-15, POC-16, POC-17, POC-14 POC-5
POC-47 PAH-6(gp) ;
Inv6ü via POC-19 PAH-21(dma) ;
Inv7ü via POC-15, POC-16, POC-17, POC-14

PAH-6(gp) POC-39, POC-40, POC-45

PAH-8(dp), PAH-9(dp), PAH-10(dp),
PAH-11(dp) ;
Inv8ü via Inv7ü , Inv8ü , Inv9ü , Inv10ü , POC-46, POC-18 ;
Inv9ü via POC-11, POC-12, POC-46, PAH-6(gp)

POC-39, POC-40, POC-45, POC-47, PAH-8(dp),
PAH-9(dp), PAH-10(dp), PAH-11(dp) ;
Inv10ü via POC-20, POC-21,

• ./uh2vhcall and ./vh2uhret :
Inv3ü via POC-7, POC-37, POC-38, POC-44, POC-9,
POC-10; PAH-18(ex), PAH-19(ex), PAH-4(gp),
PAH-5(gp) ;
Inv4ü via POC-15, POC-16, POC-17, POC-14

PAH-6(gp) POC-39, POC-40, POC-45

PAH-8(dp), PAH-9(dp), PAH-10(dp),
PAH-11(dp) ;
Inv5ü via POC-15, POC-16, POC-17, POC-14 POC-5
POC-47 PAH-6(gp) ;
Inv6ü via POC-19 PAH-21(dma) ;
Inv7ü via POC-15, POC-16, POC-17, POC-14

PAH-6(gp) POC-39, POC-40, POC-45

PAH-8(dp), PAH-9(dp), PAH-10(dp),
PAH-11(dp) ;
Inv8ü via Inv7ü , Inv8ü , Inv9ü , Inv10ü , POC-46, POC-18 ;
Inv9ü via POC-11, POC-12, POC-46, PAH-6(gp)

POC-39, POC-40, POC-45, POC-47, PAH-8(dp),
PAH-9(dp), PAH-10(dp), PAH-11(dp) ;
Inv10ü via POC-20, POC-21,

• ./vh2ugcall :
Inv3ü via POC-7, POC-37, POC-38, POC-44, POC-9,
POC-10; PAH-18(ex), PAH-4(gp), PAH-5(gp)

POC-41 PAH-12(dpg), PAH-14(dpg),
PAH-16(dpg) ;
Inv4ü via POC-15, POC-16, POC-17, POC-14

PAH-6(gp) POC-41, POC-42 PAH-12(dpg),
PAH-14(dpg), PAH-16(dpg) ;
Inv5ü via POC-15, POC-16, POC-17, POC-14 POC-5
POC-47 PAH-6(gp) ;
Inv6ü via POC-19 PAH-21(dma) ;
Inv7ü via POC-15, POC-16, POC-17, POC-14

PAH-6(gp) POC-41, POC-42 PAH-12(dpg),
PAH-14(dpg), PAH-16(dpg) ;
Inv8ü via Inv7ü , Inv8ü , Inv9ü , Inv10ü , POC-46, POC-18,
;
Inv9ü via POC-11, POC-12, POC-46, PAH-6(gp)

POC-43 PAH-12(dpg), PAH-14(dpg),
PAH-16(dpg) ;
Inv10ü via POC-20, POC-21,

• ./ug2vhcall :
Inv3ü via POC-7, POC-37, POC-38, POC-44, POC-9,
POC-10; PAH-18(ex), PAH-4(gp), PAH-5(gp)

PAH-15(dpg), PAH-13(dpg) ;
Inv4ü via POC-15, POC-16, POC-17, POC-14

PAH-6(gp) PAH-15(dpg), PAH-13(dpg) ;
Inv5ü via POC-15, POC-16, POC-17, POC-14 POC-5
POC-47 PAH-6(gp) ;
Inv6ü via POC-19 PAH-21(dma) ;

31

Inv7ü via POC-15, POC-16, POC-17, POC-14

PAH-6(gp) PAH-15(dpg), PAH-13(dpg) ;
Inv8ü via Inv7ü , Inv8ü , Inv9ü , Inv10ü , POC-46, POC-18 ;
Inv9ü via POC-11, POC-12, POC-46, PAH-6(gp)

PAH-15(dpg), PAH-13(dpg) ;
Inv10ü via POC-20, POC-21,

• ./excpcall :
Inv3ü via POC-7, POC-37, POC-38, POC-44, POC-9,
POC-10; PAH-18(ex), PAH-19(ex), PAH-4(gp),
PAH-5(gp) ;
Inv4ü via POC-15, POC-16, POC-17, POC-14

PAH-6(gp) ;
Inv5ü via POC-15, POC-16, POC-17, POC-14 POC-5
POC-47 PAH-6(gp) ;
Inv6ü via POC-19 PAH-21(dma) ;
Inv7ü via POC-15, POC-16, POC-17, POC-14

PAH-6(gp) ;
Inv8ü via Inv7ü , Inv8ü , Inv9ü , Inv10ü , POC-46, POC-18 ;
Inv9ü via POC-11, POC-12, POC-46, PAH-6(gp) ;
Inv10ü via POC-20, POC-21,

• ./excpret :
Inv3ü via POC-7, POC-37, POC-38, POC-44, POC-9,
POC-10; PAH-18(ex), PAH-19(ex), PAH-4(gp),
PAH-5(gp) ;
Inv4ü via POC-15, POC-16, POC-17, POC-14

PAH-6(gp) ;
Inv5ü via POC-15, POC-16, POC-17, POC-14 POC-5
POC-47 PAH-6(gp) ;
Inv6ü via POC-19 PAH-21(dma) ;
Inv7ü via POC-15, POC-16, POC-17, POC-14

PAH-6(gp) ;
Inv8ü via Inv7ü , Inv8ü , Inv9ü , Inv10ü , POC-46, POC-18,
PAH-20(ex) ;
Inv9ü via POC-11, POC-12, POC-46, PAH-6(gp) ;
Inv10ü via POC-20, POC-21,

• Verified hypervisor program üobjects:
Inv3ü via PAH-4(gp), PAH-5(gp), PAH-18(ex),
POC-7, POC-9, POC-10, POC-44, ;
Inv4ü via PAH-6(gp), POC-15, POC-16, POC-17,
POC-13, POC-14 ;
Inv5ü via POC-5, PAH-6(gp), POC-15, POC-16,
POC-17, POC-13, POC-14 ;
Inv6ü via PAH-21(dma), POC-19 ;
Inv7ü via PAH-6(gp), POC-15, POC-16, POC-17,
POC-13, POC-14 ;
Inv8ü via Inv7ü , Inv8ü , Inv9ü , Inv10ü , PAH-18(ex),
POC-9, POC-10, POC-18 ;
Inv9ü via PAH-6(gp), POC-1, POC-2, POC-11,
POC-12 POC-15, POC-16, POC-17, POC-13,
POC-14 ;
Inv10ü via POC-21, POC-20,

• Verified hypervisor program üobjects (multi-core):
Inv3ü via PAH-4(gp), PAH-5(gp), PAH-18(ex),
POC-7, POC-9, POC-10, POC-44, ;

Inv4ü via PAH-6(gp), POC-15, POC-16, POC-17,
POC-13, POC-14 ;
Inv5ü via POC-5, PAH-6(gp), POC-15, POC-16,
POC-17, POC-13, POC-14 ;
Inv6ü via PAH-21(dma), POC-19 ;
Inv7ü via PAH-6(gp), POC-15, POC-16, POC-17,
POC-13, POC-14 ;
Inv8ü via Inv7ü , Inv8ü , Inv9ü , Inv10ü , PAH-18(ex),
POC-9, POC-10, POC-18 ;
Inv9ü via PAH-6(gp), POC-1, POC-2, POC-11,
POC-12 POC-15, POC-16, POC-17, POC-13,
POC-14 ;
Inv10ü via POC-20, POC-21,

• Unverified (trusted) hypervisor program üobjects:
Inv3ü via PAH-4(gp), PAH-5(gp), PAH-8(dp),
PAH-19(ex) ;
Inv4ü via PAH-6(gp), PAH-8(dp), PAH-9(dp),
PAH-6(gp) ;
Inv5ü via PAH-6(gp), PAH-8(dp), PAH-9(dp) ;
Inv6ü via PAH-21(dma) PAH-8(dp), PAH-9(dp),
PAH-6(gp) ;
Inv7ü via PAH-6(gp), PAH-8(dp), PAH-9(dp),
PAH-6(gp) ;
Inv8ü via PAH-11(dp), PAH-19(ex), PAH-8(dp),
PAH-9(dp), PAH-6(gp) ;
Inv9ü via PAH-11(dp), PAH-8(dp), PAH-9(dp),
PAH-6(gp) ;
Inv10ü via PAH-8(dp), PAH-9(dp), PAH-6(gp)

32

	Introduction
	Problem
	Solution
	Contributions
	A Motivating Example
	Goals and Assumptions
	Goals
	Compositionality
	Legacy Compatibility & Usability
	Performance
	Non-goals
	Attacker Model and Assumptions
	üSpark Architecture
	üObjects
	Prime
	üObject Interaction
	Sentinel
	üObject Resource Confinement
	üAPI üobjects
	üSpark Blueprint
	üSpark Formalism
	üSpark Formalism Overview
	Verification Approach and Theorems
	Hardware Model and Converting Assembly to C
	Abstract üSpark
	üSpark Hypervisor Implementation
	Core, Hypapp and Guest üObjects
	Prime üObject
	Sentinel üObject
	üAPI üObjects
	üObject Runtime Library
	üSpark Hypervisor Verification
	Verification and Development Tools
	Static Analysis with Frama-C
	Hardware Model
	üSpark Frama-C Plugins
	Frama-C and CompCert
	Soundness Via Weakening
	üXMHF Verification
	üObject Composition Check
	üObject Compositional Verification
	POC Verification
	Evaluation
	System size and Verification TCB
	Developer Effort
	Performance Measurements
	üSpark Microbenchmarks
	üXMHF Microbenchmarks
	üXMHF Guest Benchmarks
	üXMHF Application Benchmarks
	Experience and Lessons Learned
	Frama-C
	Verification Theories
	Annotations
	CompCert
	Related Work
	Unverified monolithic
	Unverified disaggregation
	Verified sandboxing
	Verified kernels
	Verified System Stack
	Limitations and Future Work
	Hardware Model
	CASM and Certified Compilation
	Functional Verification
	Concurrency
	Soundness of Tools
	System Software Applicability
	Conclusion
	References
	Appendix A: Verification of üXMHF üobjects local invariant properties
	Appendix B: üXMHF üobject Use Manifest
	Appendix C: üSpark Invariants, Models, Semantics and Proofs
	Appendix D: Discharging üSpark Invariants as Proof Assumptions on Hardware and Proof Obligations on Code

